{ "data": { "question": { "questionId": "3073", "questionFrontendId": "2890", "boundTopicId": null, "title": "Reshape Data: Melt", "titleSlug": "reshape-data-melt", "content": "
\nDataFrame report\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| product     | object |\n| quarter_1   | int    |\n| quarter_2   | int    |\n| quarter_3   | int    |\n| quarter_4   | int    |\n+-------------+--------+\n
\n\n

Write a solution to reshape the data so that each row represents sales data for a product in a specific quarter.

\n\n

The result format is in the following example.

\n\n

 

\n

Example 1:

\n\n
\nInput:\n+-------------+-----------+-----------+-----------+-----------+\n| product     | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella    | 417       | 224       | 379       | 611       |\n| SleepingBag | 800       | 936       | 93        | 875       |\n+-------------+-----------+-----------+-----------+-----------+\nOutput:\n+-------------+-----------+-------+\n| product     | quarter   | sales |\n+-------------+-----------+-------+\n| Umbrella    | quarter_1 | 417   |\n| SleepingBag | quarter_1 | 800   |\n| Umbrella    | quarter_2 | 224   |\n| SleepingBag | quarter_2 | 936   |\n| Umbrella    | quarter_3 | 379   |\n| SleepingBag | quarter_3 | 93    |\n| Umbrella    | quarter_4 | 611   |\n| SleepingBag | quarter_4 | 875   |\n+-------------+-----------+-------+\nExplanation:\nThe DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.\n
\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 32, "dislikes": 2, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}", "categoryTitle": "pandas", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef meltTable(report: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"7.1K\", \"totalSubmission\": \"8.6K\", \"totalAcceptedRaw\": 7096, \"totalSubmissionRaw\": 8603, \"acRate\": \"82.5%\"}", "hints": [ "Consider using a built-in function in pandas library to transform the data" ], "solution": { "id": "2105", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}", "metaData": "{\n \"pythondata\": [\n \"report = pd.DataFrame([], columns=['product', 'quarter_1', 'quarter_2', 'quarter_3', 'quarter_4']).astype({'product':'object', 'quarter_1':'Int64', 'quarter_2':'Int64', 'quarter_3':'Int64', 'quarter_4':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"meltTable\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"pythondata\": [\"Pandas\", \"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }