{ "data": { "question": { "questionId": "1390", "questionFrontendId": "1251", "categoryTitle": "Database", "boundTopicId": 41811, "title": "Average Selling Price", "titleSlug": "average-selling-price", "content": "
Table: Prices
\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| start_date | date |\n| end_date | date |\n| price | int |\n+---------------+---------+\n(product_id, start_date, end_date) is the primary key (combination of columns with unique values) for this table.\nEach row of this table indicates the price of the product_id in the period from start_date to end_date.\nFor each product_id there will be no two overlapping periods. That means there will be no two intersecting periods for the same product_id.\n\n\n
\n\n
Table: UnitsSold
\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| purchase_date | date |\n| units | int |\n+---------------+---------+\nThis table may contain duplicate rows.\nEach row of this table indicates the date, units, and product_id of each product sold. \n\n\n
\n\n
Write a solution to find the average selling price for each product. average_price
should be rounded to 2 decimal places.
Return the result table in any order.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput: \nPrices table:\n+------------+------------+------------+--------+\n| product_id | start_date | end_date | price |\n+------------+------------+------------+--------+\n| 1 | 2019-02-17 | 2019-02-28 | 5 |\n| 1 | 2019-03-01 | 2019-03-22 | 20 |\n| 2 | 2019-02-01 | 2019-02-20 | 15 |\n| 2 | 2019-02-21 | 2019-03-31 | 30 |\n+------------+------------+------------+--------+\nUnitsSold table:\n+------------+---------------+-------+\n| product_id | purchase_date | units |\n+------------+---------------+-------+\n| 1 | 2019-02-25 | 100 |\n| 1 | 2019-03-01 | 15 |\n| 2 | 2019-02-10 | 200 |\n| 2 | 2019-03-22 | 30 |\n+------------+---------------+-------+\nOutput: \n+------------+---------------+\n| product_id | average_price |\n+------------+---------------+\n| 1 | 6.96 |\n| 2 | 16.96 |\n+------------+---------------+\nExplanation: \nAverage selling price = Total Price of Product / Number of products sold.\nAverage selling price for product 1 = ((100 * 5) + (15 * 20)) / 115 = 6.96\nAverage selling price for product 2 = ((200 * 15) + (30 * 30)) / 230 = 16.96\n\n", "translatedTitle": "平均售价", "translatedContent": "
表:Prices
\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| start_date | date |\n| end_date | date |\n| price | int |\n+---------------+---------+\n(product_id,start_date,end_date) 是\n\nprices
表的主键(具有唯一值的列的组合)。\nprices
表的每一行表示的是某个产品在一段时期内的价格。\n每个产品的对应时间段是不会重叠的,这也意味着同一个产品的价格时段不会出现交叉。
\n\n
表:UnitsSold
\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| purchase_date | date |\n| units | int |\n+---------------+---------+\n该表可能包含重复数据。\n该表的每一行表示的是每种产品的出售日期,单位和产品 id。\n\n
\n\n
编写解决方案以查找每种产品的平均售价。average_price
应该 四舍五入到小数点后两位。
返回结果表 无顺序要求 。
\n\n结果格式如下例所示。
\n\n\n\n
示例 1:
\n\n\n输入:\nPrices table:\n+------------+------------+------------+--------+\n| product_id | start_date | end_date | price |\n+------------+------------+------------+--------+\n| 1 | 2019-02-17 | 2019-02-28 | 5 |\n| 1 | 2019-03-01 | 2019-03-22 | 20 |\n| 2 | 2019-02-01 | 2019-02-20 | 15 |\n| 2 | 2019-02-21 | 2019-03-31 | 30 |\n+------------+------------+------------+--------+\nUnitsSold table:\n+------------+---------------+-------+\n| product_id | purchase_date | units |\n+------------+---------------+-------+\n| 1 | 2019-02-25 | 100 |\n| 1 | 2019-03-01 | 15 |\n| 2 | 2019-02-10 | 200 |\n| 2 | 2019-03-22 | 30 |\n+------------+---------------+-------+\n输出:\n+------------+---------------+\n| product_id | average_price |\n+------------+---------------+\n| 1 | 6.96 |\n| 2 | 16.96 |\n+------------+---------------+\n解释:\n平均售价 = 产品总价 / 销售的产品数量。\n产品 1 的平均售价 = ((100 * 5)+(15 * 20) )/ 115 = 6.96\n产品 2 的平均售价 = ((200 * 15)+(30 * 30) )/ 230 = 16.96\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 110, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [ { "name": "Database", "slug": "database", "translatedName": "数据库", "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "MySQL", "langSlug": "mysql", "code": "# Write your MySQL query statement below", "__typename": "CodeSnippetNode" }, { "lang": "MS SQL Server", "langSlug": "mssql", "code": "/* Write your T-SQL query statement below */", "__typename": "CodeSnippetNode" }, { "lang": "Oracle", "langSlug": "oraclesql", "code": "/* Write your PL/SQL query statement below */", "__typename": "CodeSnippetNode" }, { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef average_selling_price(prices: pd.DataFrame, units_sold: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" }, { "lang": "PostgreSQL", "langSlug": "postgresql", "code": "-- Write your PostgreSQL query statement below", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"36.8K\", \"totalSubmission\": \"64.5K\", \"totalAcceptedRaw\": 36755, \"totalSubmissionRaw\": 64499, \"acRate\": \"57.0%\"}", "hints": [], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}", "metaData": "{\"mysql\":[\"Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\",\"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"],\"mssql\":[\"Create table Prices (product_id int, start_date date, end_date date, price int)\",\"Create table UnitsSold (product_id int, purchase_date date, units int)\"],\"oraclesql\":[\"Create table Prices (product_id int, start_date date, end_date date, price int)\",\"Create table UnitsSold (product_id int, purchase_date date, units int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"average_selling_price\",\"pythondata\":[\"Prices = pd.DataFrame([], columns=['product_id', 'start_date', 'end_date', 'price']).astype({'product_id':'Int64', 'start_date':'datetime64[ns]', 'end_date':'datetime64[ns]', 'price':'Int64'})\",\"UnitsSold = pd.DataFrame([], columns=['product_id', 'purchase_date', 'units']).astype({'product_id':'Int64', 'purchase_date':'datetime64[ns]', 'units':'Int64'})\"],\"postgresql\":[\"\\nCreate table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\\n\",\"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"],\"database_schema\":{\"Prices\":{\"product_id\":\"INT\",\"start_date\":\"DATE\",\"end_date\":\"DATE\",\"price\":\"INT\"},\"UnitsSold\":{\"product_id\":\"INT\",\"purchase_date\":\"DATE\",\"units\":\"INT\"}}}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [ "Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)", "Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)", "Truncate table Prices", "insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-02-17', '2019-02-28', '5')", "insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-03-01', '2019-03-22', '20')", "insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-01', '2019-02-20', '15')", "insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-21', '2019-03-31', '30')", "Truncate table UnitsSold", "insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-02-25', '100')", "insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-03-01', '15')", "insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-02-10', '200')", "insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-03-22', '30')" ], "enableRunCode": true, "envInfo": "{\"mysql\":[\"MySQL\",\"
\\u7248\\u672c\\uff1a mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\" Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\" Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\" PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}",
"__typename": "QuestionNode"
}
}
}MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"