{ "data": { "question": { "questionId": "3509", "questionFrontendId": "3319", "boundTopicId": null, "title": "K-th Largest Perfect Subtree Size in Binary Tree", "titleSlug": "k-th-largest-perfect-subtree-size-in-binary-tree", "content": "

You are given the root of a binary tree and an integer k.

\n\n

Return an integer denoting the size of the kth largest perfect binary subtree, or -1 if it doesn't exist.

\n\n

A perfect binary tree is a tree where all leaves are on the same level, and every parent has two children.

\n\n

 

\n

Example 1:

\n\n
\n

Input: root = [5,3,6,5,2,5,7,1,8,null,null,6,8], k = 2

\n\n

Output: 3

\n\n

Explanation:

\n\n

\"\"

\n\n

The roots of the perfect binary subtrees are highlighted in black. Their sizes, in non-increasing order are [3, 3, 1, 1, 1, 1, 1, 1].
\nThe 2nd largest size is 3.

\n
\n\n

Example 2:

\n\n
\n

Input: root = [1,2,3,4,5,6,7], k = 1

\n\n

Output: 7

\n\n

Explanation:

\n\n

\"\"

\n\n

The sizes of the perfect binary subtrees in non-increasing order are [7, 3, 3, 1, 1, 1, 1]. The size of the largest perfect binary subtree is 7.

\n
\n\n

Example 3:

\n\n
\n

Input: root = [1,2,3,null,4], k = 3

\n\n

Output: -1

\n\n

Explanation:

\n\n

\"\"

\n\n

The sizes of the perfect binary subtrees in non-increasing order are [1, 1]. There are fewer than 3 perfect binary subtrees.

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 88, "dislikes": 8, "isLiked": null, "similarQuestions": "[{\"title\": \"Balanced Binary Tree\", \"titleSlug\": \"balanced-binary-tree\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]", "exampleTestcases": "[5,3,6,5,2,5,7,1,8,null,null,6,8]\n2\n[1,2,3,4,5,6,7]\n1\n[1,2,3,null,4]\n3", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Tree", "slug": "tree", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Depth-First Search", "slug": "depth-first-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Tree", "slug": "binary-tree", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "/**\n * Definition for a binary tree node.\n * struct TreeNode {\n * int val;\n * TreeNode *left;\n * TreeNode *right;\n * TreeNode() : val(0), left(nullptr), right(nullptr) {}\n * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}\n * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}\n * };\n */\nclass Solution {\npublic:\n int kthLargestPerfectSubtree(TreeNode* root, int k) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "/**\n * Definition for a binary tree node.\n * public class TreeNode {\n * int val;\n * TreeNode left;\n * TreeNode right;\n * TreeNode() {}\n * TreeNode(int val) { this.val = val; }\n * TreeNode(int val, TreeNode left, TreeNode right) {\n * this.val = val;\n * this.left = left;\n * this.right = right;\n * }\n * }\n */\nclass Solution {\n public int kthLargestPerfectSubtree(TreeNode root, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "# Definition for a binary tree node.\n# class TreeNode(object):\n# def __init__(self, val=0, left=None, right=None):\n# self.val = val\n# self.left = left\n# self.right = right\nclass Solution(object):\n def kthLargestPerfectSubtree(self, root, k):\n \"\"\"\n :type root: Optional[TreeNode]\n :type k: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "# Definition for a binary tree node.\n# class TreeNode:\n# def __init__(self, val=0, left=None, right=None):\n# self.val = val\n# self.left = left\n# self.right = right\nclass Solution:\n def kthLargestPerfectSubtree(self, root: Optional[TreeNode], k: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Definition for a binary tree node.\n * struct TreeNode {\n * int val;\n * struct TreeNode *left;\n * struct TreeNode *right;\n * };\n */\nint kthLargestPerfectSubtree(struct TreeNode* root, int k) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "/**\n * Definition for a binary tree node.\n * public class TreeNode {\n * public int val;\n * public TreeNode left;\n * public TreeNode right;\n * public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {\n * this.val = val;\n * this.left = left;\n * this.right = right;\n * }\n * }\n */\npublic class Solution {\n public int KthLargestPerfectSubtree(TreeNode root, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * Definition for a binary tree node.\n * function TreeNode(val, left, right) {\n * this.val = (val===undefined ? 0 : val)\n * this.left = (left===undefined ? null : left)\n * this.right = (right===undefined ? null : right)\n * }\n */\n/**\n * @param {TreeNode} root\n * @param {number} k\n * @return {number}\n */\nvar kthLargestPerfectSubtree = function(root, k) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "/**\n * Definition for a binary tree node.\n * class TreeNode {\n * val: number\n * left: TreeNode | null\n * right: TreeNode | null\n * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {\n * this.val = (val===undefined ? 0 : val)\n * this.left = (left===undefined ? null : left)\n * this.right = (right===undefined ? null : right)\n * }\n * }\n */\n\nfunction kthLargestPerfectSubtree(root: TreeNode | null, k: number): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "/**\n * Definition for a binary tree node.\n * class TreeNode {\n * public $val = null;\n * public $left = null;\n * public $right = null;\n * function __construct($val = 0, $left = null, $right = null) {\n * $this->val = $val;\n * $this->left = $left;\n * $this->right = $right;\n * }\n * }\n */\nclass Solution {\n\n /**\n * @param TreeNode $root\n * @param Integer $k\n * @return Integer\n */\n function kthLargestPerfectSubtree($root, $k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "/**\n * Definition for a binary tree node.\n * public class TreeNode {\n * public var val: Int\n * public var left: TreeNode?\n * public var right: TreeNode?\n * public init() { self.val = 0; self.left = nil; self.right = nil; }\n * public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; }\n * public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {\n * self.val = val\n * self.left = left\n * self.right = right\n * }\n * }\n */\nclass Solution {\n func kthLargestPerfectSubtree(_ root: TreeNode?, _ k: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "/**\n * Example:\n * var ti = TreeNode(5)\n * var v = ti.`val`\n * Definition for a binary tree node.\n * class TreeNode(var `val`: Int) {\n * var left: TreeNode? = null\n * var right: TreeNode? = null\n * }\n */\nclass Solution {\n fun kthLargestPerfectSubtree(root: TreeNode?, k: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "/**\n * Definition for a binary tree node.\n * class TreeNode {\n * int val;\n * TreeNode? left;\n * TreeNode? right;\n * TreeNode([this.val = 0, this.left, this.right]);\n * }\n */\nclass Solution {\n int kthLargestPerfectSubtree(TreeNode? root, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "/**\n * Definition for a binary tree node.\n * type TreeNode struct {\n * Val int\n * Left *TreeNode\n * Right *TreeNode\n * }\n */\nfunc kthLargestPerfectSubtree(root *TreeNode, k int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# Definition for a binary tree node.\n# class TreeNode\n# attr_accessor :val, :left, :right\n# def initialize(val = 0, left = nil, right = nil)\n# @val = val\n# @left = left\n# @right = right\n# end\n# end\n# @param {TreeNode} root\n# @param {Integer} k\n# @return {Integer}\ndef kth_largest_perfect_subtree(root, k)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "/**\n * Definition for a binary tree node.\n * class TreeNode(_value: Int = 0, _left: TreeNode = null, _right: TreeNode = null) {\n * var value: Int = _value\n * var left: TreeNode = _left\n * var right: TreeNode = _right\n * }\n */\nobject Solution {\n def kthLargestPerfectSubtree(root: TreeNode, k: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "// Definition for a binary tree node.\n// #[derive(Debug, PartialEq, Eq)]\n// pub struct TreeNode {\n// pub val: i32,\n// pub left: Option>>,\n// pub right: Option>>,\n// }\n// \n// impl TreeNode {\n// #[inline]\n// pub fn new(val: i32) -> Self {\n// TreeNode {\n// val,\n// left: None,\n// right: None\n// }\n// }\n// }\nuse std::rc::Rc;\nuse std::cell::RefCell;\nimpl Solution {\n pub fn kth_largest_perfect_subtree(root: Option>>, k: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "; Definition for a binary tree node.\n#|\n\n; val : integer?\n; left : (or/c tree-node? #f)\n; right : (or/c tree-node? #f)\n(struct tree-node\n (val left right) #:mutable #:transparent)\n\n; constructor\n(define (make-tree-node [val 0])\n (tree-node val #f #f))\n\n|#\n\n(define/contract (kth-largest-perfect-subtree root k)\n (-> (or/c tree-node? #f) exact-integer? exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "%% Definition for a binary tree node.\n%%\n%% -record(tree_node, {val = 0 :: integer(),\n%% left = null :: 'null' | #tree_node{},\n%% right = null :: 'null' | #tree_node{}}).\n\n-spec kth_largest_perfect_subtree(Root :: #tree_node{} | null, K :: integer()) -> integer().\nkth_largest_perfect_subtree(Root, K) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "# Definition for a binary tree node.\n#\n# defmodule TreeNode do\n# @type t :: %__MODULE__{\n# val: integer,\n# left: TreeNode.t() | nil,\n# right: TreeNode.t() | nil\n# }\n# defstruct val: 0, left: nil, right: nil\n# end\n\ndefmodule Solution do\n @spec kth_largest_perfect_subtree(root :: TreeNode.t | nil, k :: integer) :: integer\n def kth_largest_perfect_subtree(root, k) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"20.3K\", \"totalSubmission\": \"32.6K\", \"totalAcceptedRaw\": 20258, \"totalSubmissionRaw\": 32586, \"acRate\": \"62.2%\"}", "hints": [ "For a subtree to form a perfect binary subtree, its children should also be perfect binary subtrees.", "Check recursively that both the node and its children are perfect binary subtrees.", "Gather all the perfect binary subtrees and return the kth largest." ], "solution": null, "status": null, "sampleTestCase": "[5,3,6,5,2,5,7,1,8,null,null,6,8]\n2", "metaData": "{\n \"name\": \"kthLargestPerfectSubtree\",\n \"params\": [\n {\n \"name\": \"root\",\n \"type\": \"TreeNode\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 17 using the latest C++ 23 standard, and libstdc++ provided by GCC 13.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 21. Using compile arguments: --enable-preview --release 21

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 13 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 12 with .NET 8 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 20.10.0.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue and 1.0.4 version of datastructures-js/deque.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.2

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.10.

\\r\\n\\r\\n

You may use swift-algorithms 1.2.0 and swift-collections 1.1.0.

\"], \"golang\": [\"Go\", \"

Go 1.23

\\r\\n

Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.

\"], \"python3\": [\"Python3\", \"

Python 3.11.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 3.3.1.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\\r\\n\\r\\n

We are using an experimental compiler provided by JetBrains.

\"], \"rust\": [\"Rust\", \"

Rust 1.79.0. Your code will be compiled with opt-level 2.

\\r\\n\\r\\n

Supports rand v0.8 and regex\\u00a0v1 from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.2.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 20.10.0.

\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue and 1.0.4 version of datastructures-js/deque.

\"], \"racket\": [\"Racket\", \"

Racket CS v8.11

\\r\\n\\r\\n

Using #lang racket

\\r\\n\\r\\n

Required data/gvector data/queue data/order data/heap automatically for your convenience

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.16 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"

Dart 3.2. You may use package collection

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }