给你一个无向图,无向图由整数 n
,表示图中节点的数目,和 edges
组成,其中 edges[i] = [ui, vi]
表示 ui
和 vi
之间有一条无向边。同时给你一个代表查询的整数数组 queries
。
第 j
个查询的答案是满足如下条件的点对 (a, b)
的数目:
a < b
cnt
是与 a
或者 b
相连的边的数目,且 cnt
严格大于 queries[j]
。请你返回一个数组 answers
,其中 answers.length == queries.length
且 answers[j]
是第 j
个查询的答案。
请注意,图中可能会有 多重边 。
示例 1:
输入:n = 4, edges = [[1,2],[2,4],[1,3],[2,3],[2,1]], queries = [2,3] 输出:[6,5] 解释:每个点对中,与至少一个点相连的边的数目如上图所示。 answers[0] = 6。所有的点对(a, b)中边数和都大于2,故有6个; answers[1] = 5。所有的点对(a, b)中除了(3,4)边数等于3,其它点对边数和都大于3,故有5个。
示例 2:
输入:n = 5, edges = [[1,5],[1,5],[3,4],[2,5],[1,3],[5,1],[2,3],[2,5]], queries = [1,2,3,4,5] 输出:[10,10,9,8,6]
提示:
2 <= n <= 2 * 104
1 <= edges.length <= 105
1 <= ui, vi <= n
ui != vi
1 <= queries.length <= 20
0 <= queries[j] < edges.length