给你一个整数 n
。现有一个包含 n
个顶点的 无向 图,顶点按从 0
到 n - 1
编号。给你一个二维整数数组 edges
其中 edges[i] = [ai, bi]
表示顶点 ai
和 bi
之间存在一条 无向 边。
返回图中 完全连通分量 的数量。
如果在子图中任意两个顶点之间都存在路径,并且子图中没有任何一个顶点与子图外部的顶点共享边,则称其为 连通分量 。
如果连通分量中每对节点之间都存在一条边,则称其为 完全连通分量 。
示例 1:
输入:n = 6, edges = [[0,1],[0,2],[1,2],[3,4]] 输出:3 解释:如上图所示,可以看到此图所有分量都是完全连通分量。
示例 2:
输入:n = 6, edges = [[0,1],[0,2],[1,2],[3,4],[3,5]] 输出:1 解释:包含节点 0、1 和 2 的分量是完全连通分量,因为每对节点之间都存在一条边。 包含节点 3 、4 和 5 的分量不是完全连通分量,因为节点 4 和 5 之间不存在边。 因此,在图中完全连接分量的数量是 1 。
提示:
1 <= n <= 50
0 <= edges.length <= n * (n - 1) / 2
edges[i].length == 2
0 <= ai, bi <= n - 1
ai != bi