给你一个下标从 0 开始的 m x n
整数矩阵 grid
和一个整数 k
。你从起点 (0, 0)
出发,每一步只能往 下 或者往 右 ,你想要到达终点 (m - 1, n - 1)
。
请你返回路径和能被 k
整除的路径数目,由于答案可能很大,返回答案对 109 + 7
取余 的结果。
示例 1:
输入:grid = [[5,2,4],[3,0,5],[0,7,2]], k = 3 输出:2 解释:有两条路径满足路径上元素的和能被 k 整除。 第一条路径为上图中用红色标注的路径,和为 5 + 2 + 4 + 5 + 2 = 18 ,能被 3 整除。 第二条路径为上图中用蓝色标注的路径,和为 5 + 3 + 0 + 5 + 2 = 15 ,能被 3 整除。
示例 2:
输入:grid = [[0,0]], k = 5 输出:1 解释:红色标注的路径和为 0 + 0 = 0 ,能被 5 整除。
示例 3:
输入:grid = [[7,3,4,9],[2,3,6,2],[2,3,7,0]], k = 1 输出:10 解释:每个数字都能被 1 整除,所以每一条路径的和都能被 k 整除。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 5 * 104
1 <= m * n <= 5 * 104
0 <= grid[i][j] <= 100
1 <= k <= 50