给你一个下标从 1 开始、大小为 m x n
的整数矩阵 mat
,你可以选择任一单元格作为 起始单元格 。
从起始单元格出发,你可以移动到 同一行或同一列 中的任何其他单元格,但前提是目标单元格的值 严格大于 当前单元格的值。
你可以多次重复这一过程,从一个单元格移动到另一个单元格,直到无法再进行任何移动。
请你找出从某个单元开始访问矩阵所能访问的 单元格的最大数量 。
返回一个表示可访问单元格最大数量的整数。
示例 1:
输入:mat = [[3,1],[3,4]] 输出:2 解释:上图展示了从第 1 行、第 2 列的单元格开始,可以访问 2 个单元格。可以证明,无论从哪个单元格开始,最多只能访问 2 个单元格,因此答案是 2 。
示例 2:
输入:mat = [[1,1],[1,1]] 输出:1 解释:由于目标单元格必须严格大于当前单元格,在本示例中只能访问 1 个单元格。
示例 3:
输入:mat = [[3,1,6],[-9,5,7]] 输出:4 解释:上图展示了从第 2 行、第 1 列的单元格开始,可以访问 4 个单元格。可以证明,无论从哪个单元格开始,最多只能访问 4 个单元格,因此答案是 4 。
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 105
1 <= m * n <= 105
-105 <= mat[i][j] <= 105