给你一个长度为 n
的整数数组 nums
和一个整数 numSlots
,满足2 * numSlots >= n
。总共有 numSlots
个篮子,编号为 1
到 numSlots
。
你需要把所有 n
个整数分到这些篮子中,且每个篮子 至多 有 2 个整数。一种分配方案的 与和 定义为每个数与它所在篮子编号的 按位与运算 结果之和。
[1, 3]
放入篮子 1
中,[4, 6]
放入篮子 2
中,这个方案的与和为 (1 AND 1) + (3 AND 1) + (4 AND 2) + (6 AND 2) = 1 + 1 + 0 + 2 = 4
。请你返回将 nums
中所有数放入 numSlots
个篮子中的最大与和。
示例 1:
输入:nums = [1,2,3,4,5,6], numSlots = 3 输出:9 解释:一个可行的方案是 [1, 4] 放入篮子 1 中,[2, 6] 放入篮子 2 中,[3, 5] 放入篮子 3 中。 最大与和为 (1 AND 1) + (4 AND 1) + (2 AND 2) + (6 AND 2) + (3 AND 3) + (5 AND 3) = 1 + 0 + 2 + 2 + 3 + 1 = 9 。
示例 2:
输入:nums = [1,3,10,4,7,1], numSlots = 9 输出:24 解释:一个可行的方案是 [1, 1] 放入篮子 1 中,[3] 放入篮子 3 中,[4] 放入篮子 4 中,[7] 放入篮子 7 中,[10] 放入篮子 9 中。 最大与和为 (1 AND 1) + (1 AND 1) + (3 AND 3) + (4 AND 4) + (7 AND 7) + (10 AND 9) = 1 + 1 + 3 + 4 + 7 + 8 = 24 。 注意,篮子 2 ,5 ,6 和 8 是空的,这是允许的。
提示:
n == nums.length
1 <= numSlots <= 9
1 <= n <= 2 * numSlots
1 <= nums[i] <= 15