给你一个 n
个节点的无向无根树,节点编号从 0
到 n - 1
。给你整数 n
和一个长度为 n - 1
的二维整数数组 edges
,其中 edges[i] = [ai, bi]
表示树中节点 ai
和 bi
之间有一条边。再给你一个长度为 n
的数组 coins
,其中 coins[i]
可能为 0
也可能为 1
,1
表示节点 i
处有一个金币。
一开始,你需要选择树中任意一个节点出发。你可以执行下述操作任意次:
2
以内的所有金币,或者你需要收集树中所有的金币,并且回到出发节点,请你返回最少经过的边数。
如果你多次经过一条边,每一次经过都会给答案加一。
示例 1:
输入:coins = [1,0,0,0,0,1], edges = [[0,1],[1,2],[2,3],[3,4],[4,5]] 输出:2 解释:从节点 2 出发,收集节点 0 处的金币,移动到节点 3 ,收集节点 5 处的金币,然后移动回节点 2 。
示例 2:
输入:coins = [0,0,0,1,1,0,0,1], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[5,6],[5,7]] 输出:2 解释:从节点 0 出发,收集节点 4 和 3 处的金币,移动到节点 2 处,收集节点 7 处的金币,移动回节点 0 。
提示:
n == coins.length
1 <= n <= 3 * 104
0 <= coins[i] <= 1
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
表示一棵合法的树。