给你一个整数 n
,表示网络上的用户数目。每个用户按从 0
到 n - 1
进行编号。
给你一个下标从 0 开始的二维整数数组 restrictions
,其中 restrictions[i] = [xi, yi]
意味着用户 xi
和用户 yi
不能 成为 朋友 ,不管是 直接 还是通过其他用户 间接 。
最初,用户里没有人是其他用户的朋友。给你一个下标从 0 开始的二维整数数组 requests
表示好友请求的列表,其中 requests[j] = [uj, vj]
是用户 uj
和用户 vj
之间的一条好友请求。
如果 uj
和 vj
可以成为 朋友 ,那么好友请求将会 成功 。每个好友请求都会按列表中给出的顺序进行处理(即,requests[j]
会在 requests[j + 1]
前)。一旦请求成功,那么对所有未来的好友请求而言, uj
和 vj
将会 成为直接朋友 。
返回一个 布尔数组 result
,其中元素遵循此规则:如果第 j
个好友请求 成功 ,那么 result[j]
就是 true
;否则,为 false
。
注意:如果 uj
和 vj
已经是直接朋友,那么他们之间的请求将仍然 成功 。
示例 1:
输入:n = 3, restrictions = [[0,1]], requests = [[0,2],[2,1]] 输出:[true,false] 解释: 请求 0 :用户 0 和 用户 2 可以成为朋友,所以他们成为直接朋友。 请求 1 :用户 2 和 用户 1 不能成为朋友,因为这会使 用户 0 和 用户 1 成为间接朋友 (1--2--0) 。
示例 2:
输入:n = 3, restrictions = [[0,1]], requests = [[1,2],[0,2]] 输出:[true,false] 解释: 请求 0 :用户 1 和 用户 2 可以成为朋友,所以他们成为直接朋友。 请求 1 :用户 0 和 用户 2 不能成为朋友,因为这会使 用户 0 和 用户 1 成为间接朋友 (0--2--1) 。
示例 3:
输入:n = 5, restrictions = [[0,1],[1,2],[2,3]], requests = [[0,4],[1,2],[3,1],[3,4]] 输出:[true,false,true,false] 解释: 请求 0 :用户 0 和 用户 4 可以成为朋友,所以他们成为直接朋友。 请求 1 :用户 1 和 用户 2 不能成为朋友,因为他们之间存在限制。 请求 2 :用户 3 和 用户 1 可以成为朋友,所以他们成为直接朋友。 请求 3 :用户 3 和 用户 4 不能成为朋友,因为这会使 用户 0 和 用户 1 成为间接朋友 (0--4--3--1) 。
提示:
2 <= n <= 1000
0 <= restrictions.length <= 1000
restrictions[i].length == 2
0 <= xi, yi <= n - 1
xi != yi
1 <= requests.length <= 1000
requests[j].length == 2
0 <= uj, vj <= n - 1
uj != vj