有一棵 n 个节点的无向树,节点编号为 0 到 n - 1 。

给你一个长度为 n 下标从 0 开始的整数数组 nums ,其中 nums[i] 表示第 i 个节点的值。同时给你一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 ai 与 bi 之间有一条边。

你可以 删除 一些边,将这棵树分成几个连通块。一个连通块的 价值 定义为这个连通块中 所有 节点 i 对应的 nums[i] 之和。

你需要删除一些边,删除后得到的各个连通块的价值都相等。请返回你可以删除的边数 最多 为多少。

 

示例 1:

输入:nums = [6,2,2,2,6], edges = [[0,1],[1,2],[1,3],[3,4]] 
输出:2 
解释:上图展示了我们可以删除边 [0,1] 和 [3,4] 。得到的连通块为 [0] ,[1,2,3] 和 [4] 。每个连通块的价值都为 6 。可以证明没有别的更好的删除方案存在了,所以答案为 2 。

示例 2:

输入:nums = [2], edges = []
输出:0
解释:没有任何边可以删除。

 

提示: