存在一棵无向连通树,树中有编号从 0
到 n - 1
的 n
个节点, 以及 n - 1
条边。
给你一个下标从 0 开始的整数数组 nums
,长度为 n
,其中 nums[i]
表示第 i
个节点的值。另给你一个二维整数数组 edges
,长度为 n - 1
,其中 edges[i] = [ai, bi]
表示树中存在一条位于节点 ai
和 bi
之间的边。
删除树中两条 不同 的边以形成三个连通组件。对于一种删除边方案,定义如下步骤以计算其分数:
[4,5,7]
、[1,9]
和 [3,3,3]
。三个异或值分别是 4 ^ 5 ^ 7 = 6
、1 ^ 9 = 8
和 3 ^ 3 ^ 3 = 3
。最大异或值是 8
,最小异或值是 3
,分数是 8 - 3 = 5
。返回在给定树上执行任意删除边方案可能的 最小 分数。
示例 1:
输入:nums = [1,5,5,4,11], edges = [[0,1],[1,2],[1,3],[3,4]] 输出:9 解释:上图展示了一种删除边方案。 - 第 1 个组件的节点是 [1,3,4] ,值是 [5,4,11] 。异或值是 5 ^ 4 ^ 11 = 10 。 - 第 2 个组件的节点是 [0] ,值是 [1] 。异或值是 1 = 1 。 - 第 3 个组件的节点是 [2] ,值是 [5] 。异或值是 5 = 5 。 分数是最大异或值和最小异或值的差值,10 - 1 = 9 。 可以证明不存在分数比 9 小的删除边方案。
示例 2:
输入:nums = [5,5,2,4,4,2], edges = [[0,1],[1,2],[5,2],[4,3],[1,3]] 输出:0 解释:上图展示了一种删除边方案。 - 第 1 个组件的节点是 [3,4] ,值是 [4,4] 。异或值是 4 ^ 4 = 0 。 - 第 2 个组件的节点是 [1,0] ,值是 [5,5] 。异或值是 5 ^ 5 = 0 。 - 第 3 个组件的节点是 [2,5] ,值是 [2,2] 。异或值是 2 ^ 2 = 0 。 分数是最大异或值和最小异或值的差值,0 - 0 = 0 。 无法获得比 0 更小的分数 0 。
提示:
n == nums.length
3 <= n <= 1000
1 <= nums[i] <= 108
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
表示一棵有效的树