给你一个整数 n
。你需要掷一个 6 面的骰子 n
次。请你在满足以下要求的前提下,求出 不同 骰子序列的数目:
1
。2
个其他值的数字。正式地,如果第 i
次掷骰子的值 等于 第 j
次的值,那么 abs(i - j) > 2
。请你返回不同序列的 总数目 。由于答案可能很大,请你将答案对 109 + 7
取余 后返回。
如果两个序列中至少有一个元素不同,那么它们被视为不同的序列。
示例 1:
输入:n = 4 输出:184 解释:一些可行的序列为 (1, 2, 3, 4) ,(6, 1, 2, 3) ,(1, 2, 3, 1) 等等。 一些不可行的序列为 (1, 2, 1, 3) ,(1, 2, 3, 6) 。 (1, 2, 1, 3) 是不可行的,因为第一个和第三个骰子值相等且 abs(1 - 3) = 2 (下标从 1 开始表示)。 (1, 2, 3, 6) i是不可行的,因为 3 和 6 的最大公约数是 3 。 总共有 184 个不同的可行序列,所以我们返回 184 。
示例 2:
输入:n = 2 输出:22 解释:一些可行的序列为 (1, 2) ,(2, 1) ,(3, 2) 。 一些不可行的序列为 (3, 6) ,(2, 4) ,因为最大公约数不为 1 。 总共有 22 个不同的可行序列,所以我们返回 22 。
提示:
1 <= n <= 104