给你一个大小为 n x n
的整数矩阵 grid
。
生成一个大小为 (n - 2) x (n - 2)
的整数矩阵 maxLocal
,并满足:
maxLocal[i][j]
等于 grid
中以 i + 1
行和 j + 1
列为中心的 3 x 3
矩阵中的 最大值 。换句话说,我们希望找出 grid
中每个 3 x 3
矩阵中的最大值。
返回生成的矩阵。
示例 1:
输入:grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]] 输出:[[9,9],[8,6]] 解释:原矩阵和生成的矩阵如上图所示。 注意,生成的矩阵中,每个值都对应 grid 中一个相接的 3 x 3 矩阵的最大值。
示例 2:
输入:grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]] 输出:[[2,2,2],[2,2,2],[2,2,2]] 解释:注意,2 包含在 grid 中每个 3 x 3 的矩阵中。
提示:
n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100