{ "data": { "question": { "questionId": "2801", "questionFrontendId": "2711", "categoryTitle": "Algorithms", "boundTopicId": 2284417, "title": "Difference of Number of Distinct Values on Diagonals", "titleSlug": "difference-of-number-of-distinct-values-on-diagonals", "content": "
Given a 0-indexed 2D grid
of size m x n
, you should find the matrix answer
of size m x n
.
The value of each cell (r, c)
of the matrix answer
is calculated in the following way:
topLeft[r][c]
be the number of distinct values in the top-left diagonal of the cell (r, c)
in the matrix grid
.bottomRight[r][c]
be the number of distinct values in the bottom-right diagonal of the cell (r, c)
in the matrix grid
.Then answer[r][c] = |topLeft[r][c] - bottomRight[r][c]|
.
Return the matrix answer
.
A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end.
\n\nA cell (r1, c1)
belongs to the top-left diagonal of the cell (r, c)
, if both belong to the same diagonal and r1 < r
. Similarly is defined bottom-right diagonal.
\n
Example 1:
\n\n\n\nInput: grid = [[1,2,3],[3,1,5],[3,2,1]]\nOutput: [[1,1,0],[1,0,1],[0,1,1]]\nExplanation: The 1st diagram denotes the initial grid. \nThe 2nd diagram denotes a grid for cell (0,0), where blue-colored cells are cells on its bottom-right diagonal.\nThe 3rd diagram denotes a grid for cell (1,2), where red-colored cells are cells on its top-left diagonal.\nThe 4th diagram denotes a grid for cell (1,1), where blue-colored cells are cells on its bottom-right diagonal and red-colored cells are cells on its top-left diagonal.\n- The cell (0,0) contains [1,1] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |1 - 0| = 1.\n- The cell (1,2) contains [] on its bottom-right diagonal and [2] on its top-left diagonal. The answer is |0 - 1| = 1.\n- The cell (1,1) contains [1] on its bottom-right diagonal and [1] on its top-left diagonal. The answer is |1 - 1| = 0.\nThe answers of other cells are similarly calculated.\n\n\n
Example 2:
\n\n\nInput: grid = [[1]]\nOutput: [[0]]\nExplanation: - The cell (0,0) contains [] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |0 - 0| = 0.\n\n\n
\n
Constraints:
\n\nm == grid.length
n == grid[i].length
1 <= m, n, grid[i][j] <= 50
给你一个下标从 0
开始、大小为 m x n
的二维矩阵 grid
,请你求解大小同样为 m x n
的答案矩阵 answer
。
矩阵 answer
中每个单元格 (r, c)
的值可以按下述方式进行计算:
topLeft[r][c]
为矩阵 grid
中单元格 (r, c)
左上角对角线上 不同值 的数量。bottomRight[r][c]
为矩阵 grid
中单元格 (r, c)
右下角对角线上 不同值 的数量。然后 answer[r][c] = |topLeft[r][c] - bottomRight[r][c]|
。
返回矩阵 answer
。
矩阵对角线 是从最顶行或最左列的某个单元格开始,向右下方向走到矩阵末尾的对角线。
\n\n如果单元格 (r1, c1)
和单元格 (r, c)
属于同一条对角线且 r1 < r
,则单元格 (r1, c1)
属于单元格 (r, c)
的左上对角线。类似地,可以定义右下对角线。
\n\n
示例 1:
\n\n\n输入:grid = [[1,2,3],[3,1,5],[3,2,1]]\n输出:[[1,1,0],[1,0,1],[0,1,1]]\n解释:第 1 个图表示最初的矩阵 grid 。 \n第 2 个图表示对单元格 (0,0) 计算,其中蓝色单元格是位于右下对角线的单元格。\n第 3 个图表示对单元格 (1,2) 计算,其中红色单元格是位于左上对角线的单元格。\n第 4 个图表示对单元格 (1,1) 计算,其中蓝色单元格是位于右下对角线的单元格,红色单元格是位于左上对角线的单元格。\n- 单元格 (0,0) 的右下对角线包含 [1,1] ,而左上对角线包含 [] 。对应答案是 |1 - 0| = 1 。\n- 单元格 (1,2) 的右下对角线包含 [] ,而左上对角线包含 [2] 。对应答案是 |0 - 1| = 1 。\n- 单元格 (1,1) 的右下对角线包含 [1] ,而左上对角线包含 [1] 。对应答案是 |1 - 1| = 0 。\n其他单元格的对应答案也可以按照这样的流程进行计算。\n\n\n
示例 2:
\n\n\n输入:grid = [[1]]\n输出:[[0]]\n解释:- 单元格 (0,0) 的右下对角线包含 [] ,左上对角线包含 [] 。对应答案是 |0 - 0| = 0 。\n\n\n
\n\n
提示:
\n\nm == grid.length
n == grid[i].length
1 <= m, n, grid[i][j] <= 50
\\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u6ce8\\u610f Python 2.7 \\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\" \\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n 1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\"],\"javascript\":[\"JavaScript\",\" \\u7248\\u672c\\uff1a \\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\" \\u4f7f\\u7528 \\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\" \\u7248\\u672c\\uff1a \\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods@v1.18.1<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\" \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a \\u652f\\u6301 crates.io \\u7684 rand<\\/a><\\/p>\"],\"php\":[\"PHP\",\" With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\" TypeScript 4.5.4<\\/p>\\r\\n\\r\\n Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2020<\\/p>\\r\\n\\r\\n lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"racket\":[\"Racket\",\"clang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 17\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
OpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n
Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n
GCC 8.2<\\/code>\\uff0c\\u91c7\\u7528GNU11\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O1<\\/code>\\u7ea7\\u4f18\\u5316\\u3002 AddressSanitizer<\\/a>\\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; \\/* we'll use this field as the key *\\/\\r\\n char name[10];\\r\\n UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"
Node.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n
--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n
Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n
Swift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n
Go 1.18<\\/code><\\/p>\\r\\n\\r\\n
Python 3.10<\\/code><\\/p>\\r\\n\\r\\n
Scala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"
Kotlin 1.3.10<\\/code><\\/p>\"],\"rust\":[\"Rust\",\"
rust 1.58.1<\\/code><\\/p>\\r\\n\\r\\n
PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n