{ "data": { "question": { "questionId": "2711", "questionFrontendId": "2577", "boundTopicId": null, "title": "Minimum Time to Visit a Cell In a Grid", "titleSlug": "minimum-time-to-visit-a-cell-in-a-grid", "content": "
You are given a m x n
matrix grid
consisting of non-negative integers where grid[row][col]
represents the minimum time required to be able to visit the cell (row, col)
, which means you can visit the cell (row, col)
only when the time you visit it is greater than or equal to grid[row][col]
.
You are standing in the top-left cell of the matrix in the 0th
second, and you must move to any adjacent cell in the four directions: up, down, left, and right. Each move you make takes 1 second.
Return the minimum time required in which you can visit the bottom-right cell of the matrix. If you cannot visit the bottom-right cell, then return -1
.
\n
Example 1:
\n\n\n\n\nInput: grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]]\nOutput: 7\nExplanation: One of the paths that we can take is the following:\n- at t = 0, we are on the cell (0,0).\n- at t = 1, we move to the cell (0,1). It is possible because grid[0][1] <= 1.\n- at t = 2, we move to the cell (1,1). It is possible because grid[1][1] <= 2.\n- at t = 3, we move to the cell (1,2). It is possible because grid[1][2] <= 3.\n- at t = 4, we move to the cell (1,1). It is possible because grid[1][1] <= 4.\n- at t = 5, we move to the cell (1,2). It is possible because grid[1][2] <= 5.\n- at t = 6, we move to the cell (1,3). It is possible because grid[1][3] <= 6.\n- at t = 7, we move to the cell (2,3). It is possible because grid[1][3] <= 7.\nThe final time is 7. It can be shown that it is the minimum time possible.\n\n\n
Example 2:
\n\n\n\n\nInput: grid = [[0,2,4],[3,2,1],[1,0,4]]\nOutput: -1\nExplanation: There is no path from the top left to the bottom-right cell.\n\n\n
\n
Constraints:
\n\nm == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
0 <= grid[i][j] <= 105
grid[0][0] == 0
\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 210, "dislikes": 4, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[[0,1,3,2],[5,1,2,5],[4,3,8,6]]\n[[0,2,4],[3,2,1],[1,0,4]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minimumTime(vector
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }