{ "data": { "question": { "questionId": "2447", "questionFrontendId": "2363", "boundTopicId": null, "title": "Merge Similar Items", "titleSlug": "merge-similar-items", "content": "

You are given two 2D integer arrays, items1 and items2, representing two sets of items. Each array items has the following properties:

\n\n\n\n

Return a 2D integer array ret where ret[i] = [valuei, weighti], with weighti being the sum of weights of all items with value valuei.

\n\n

Note: ret should be returned in ascending order by value.

\n\n

 

\n

Example 1:

\n\n
\nInput: items1 = [[1,1],[4,5],[3,8]], items2 = [[3,1],[1,5]]\nOutput: [[1,6],[3,9],[4,5]]\nExplanation: \nThe item with value = 1 occurs in items1 with weight = 1 and in items2 with weight = 5, total weight = 1 + 5 = 6.\nThe item with value = 3 occurs in items1 with weight = 8 and in items2 with weight = 1, total weight = 8 + 1 = 9.\nThe item with value = 4 occurs in items1 with weight = 5, total weight = 5.  \nTherefore, we return [[1,6],[3,9],[4,5]].\n
\n\n

Example 2:

\n\n
\nInput: items1 = [[1,1],[3,2],[2,3]], items2 = [[2,1],[3,2],[1,3]]\nOutput: [[1,4],[2,4],[3,4]]\nExplanation: \nThe item with value = 1 occurs in items1 with weight = 1 and in items2 with weight = 3, total weight = 1 + 3 = 4.\nThe item with value = 2 occurs in items1 with weight = 3 and in items2 with weight = 1, total weight = 3 + 1 = 4.\nThe item with value = 3 occurs in items1 with weight = 2 and in items2 with weight = 2, total weight = 2 + 2 = 4.\nTherefore, we return [[1,4],[2,4],[3,4]].
\n\n

Example 3:

\n\n
\nInput: items1 = [[1,3],[2,2]], items2 = [[7,1],[2,2],[1,4]]\nOutput: [[1,7],[2,4],[7,1]]\nExplanation:\nThe item with value = 1 occurs in items1 with weight = 3 and in items2 with weight = 4, total weight = 3 + 4 = 7. \nThe item with value = 2 occurs in items1 with weight = 2 and in items2 with weight = 2, total weight = 2 + 2 = 4. \nThe item with value = 7 occurs in items2 with weight = 1, total weight = 1.\nTherefore, we return [[1,7],[2,4],[7,1]].\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 190, "dislikes": 8, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[[1,1],[4,5],[3,8]]\n[[3,1],[1,5]]\n[[1,1],[3,2],[2,3]]\n[[2,1],[3,2],[1,3]]\n[[1,3],[2,2]]\n[[7,1],[2,2],[1,4]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Hash Table", "slug": "hash-table", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Ordered Set", "slug": "ordered-set", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector> mergeSimilarItems(vector>& items1, vector>& items2) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public List> mergeSimilarItems(int[][] items1, int[][] items2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def mergeSimilarItems(self, items1, items2):\n \"\"\"\n :type items1: List[List[int]]\n :type items2: List[List[int]]\n :rtype: List[List[int]]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def mergeSimilarItems(self, items1: List[List[int]], items2: List[List[int]]) -> List[List[int]]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\n/**\n * Return an array of arrays of size *returnSize.\n * The sizes of the arrays are returned as *returnColumnSizes array.\n * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().\n */\nint** mergeSimilarItems(int** items1, int items1Size, int* items1ColSize, int** items2, int items2Size, int* items2ColSize, int* returnSize, int** returnColumnSizes){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public IList> MergeSimilarItems(int[][] items1, int[][] items2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} items1\n * @param {number[][]} items2\n * @return {number[][]}\n */\nvar mergeSimilarItems = function(items1, items2) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} items1\n# @param {Integer[][]} items2\n# @return {Integer[][]}\ndef merge_similar_items(items1, items2)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func mergeSimilarItems(_ items1: [[Int]], _ items2: [[Int]]) -> [[Int]] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func mergeSimilarItems(items1 [][]int, items2 [][]int) [][]int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def mergeSimilarItems(items1: Array[Array[Int]], items2: Array[Array[Int]]): List[List[Int]] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun mergeSimilarItems(items1: Array, items2: Array): List> {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn merge_similar_items(items1: Vec>, items2: Vec>) -> Vec> {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $items1\n * @param Integer[][] $items2\n * @return Integer[][]\n */\n function mergeSimilarItems($items1, $items2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function mergeSimilarItems(items1: number[][], items2: number[][]): number[][] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (merge-similar-items items1 items2)\n (-> (listof (listof exact-integer?)) (listof (listof exact-integer?)) (listof (listof exact-integer?)))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec merge_similar_items(Items1 :: [[integer()]], Items2 :: [[integer()]]) -> [[integer()]].\nmerge_similar_items(Items1, Items2) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec merge_similar_items(items1 :: [[integer]], items2 :: [[integer]]) :: [[integer]]\n def merge_similar_items(items1, items2) do\n\n end\nend", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List> mergeSimilarItems(List> items1, List> items2) {\n\n }\n}", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"21.7K\", \"totalSubmission\": \"29K\", \"totalAcceptedRaw\": 21679, \"totalSubmissionRaw\": 28995, \"acRate\": \"74.8%\"}", "hints": [ "Map the weights using the corresponding values as keys.", "Make sure your output is sorted in ascending order by value." ], "solution": null, "status": null, "sampleTestCase": "[[1,1],[4,5],[3,8]]\n[[3,1],[1,5]]", "metaData": "{\n \"name\": \"mergeSimilarItems\",\n \"params\": [\n {\n \"type\": \"integer[][]\",\n \"name\": \"items1\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"items2\"\n }\n ],\n \"return\": {\n \"type\": \"list>\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }