{ "data": { "question": { "questionId": "1721", "questionFrontendId": "1599", "boundTopicId": null, "title": "Maximum Profit of Operating a Centennial Wheel", "titleSlug": "maximum-profit-of-operating-a-centennial-wheel", "content": "

You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.

\n\n

You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.

\n\n

You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.

\n\n

Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: customers = [8,3], boardingCost = 5, runningCost = 6\nOutput: 3\nExplanation: The numbers written on the gondolas are the number of people currently there.\n1. 8 customers arrive, 4 board and 4 wait for the next gondola, the wheel rotates. Current profit is 4 * $5 - 1 * $6 = $14.\n2. 3 customers arrive, the 4 waiting board the wheel and the other 3 wait, the wheel rotates. Current profit is 8 * $5 - 2 * $6 = $28.\n3. The final 3 customers board the gondola, the wheel rotates. Current profit is 11 * $5 - 3 * $6 = $37.\nThe highest profit was $37 after rotating the wheel 3 times.\n
\n\n

Example 2:

\n\n
\nInput: customers = [10,9,6], boardingCost = 6, runningCost = 4\nOutput: 7\nExplanation:\n1. 10 customers arrive, 4 board and 6 wait for the next gondola, the wheel rotates. Current profit is 4 * $6 - 1 * $4 = $20.\n2. 9 customers arrive, 4 board and 11 wait (2 originally waiting, 9 newly waiting), the wheel rotates. Current profit is 8 * $6 - 2 * $4 = $40.\n3. The final 6 customers arrive, 4 board and 13 wait, the wheel rotates. Current profit is 12 * $6 - 3 * $4 = $60.\n4. 4 board and 9 wait, the wheel rotates. Current profit is 16 * $6 - 4 * $4 = $80.\n5. 4 board and 5 wait, the wheel rotates. Current profit is 20 * $6 - 5 * $4 = $100.\n6. 4 board and 1 waits, the wheel rotates. Current profit is 24 * $6 - 6 * $4 = $120.\n7. 1 boards, the wheel rotates. Current profit is 25 * $6 - 7 * $4 = $122.\nThe highest profit was $122 after rotating the wheel 7 times.\n
\n\n

Example 3:

\n\n
\nInput: customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92\nOutput: -1\nExplanation:\n1. 3 customers arrive, 3 board and 0 wait, the wheel rotates. Current profit is 3 * $1 - 1 * $92 = -$89.\n2. 4 customers arrive, 4 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 2 * $92 = -$177.\n3. 0 customers arrive, 0 board and 0 wait, the wheel rotates. Current profit is 7 * $1 - 3 * $92 = -$269.\n4. 5 customers arrive, 4 board and 1 waits, the wheel rotates. Current profit is 11 * $1 - 4 * $92 = -$357.\n5. 1 customer arrives, 2 board and 0 wait, the wheel rotates. Current profit is 13 * $1 - 5 * $92 = -$447.\nThe profit was never positive, so return -1.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 68, "dislikes": 209, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[8,3]\n5\n6\n[10,9,6]\n6\n4\n[3,4,0,5,1]\n1\n92", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Simulation", "slug": "simulation", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minOperationsMaxProfit(vector& customers, int boardingCost, int runningCost) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minOperationsMaxProfit(int[] customers, int boardingCost, int runningCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minOperationsMaxProfit(self, customers, boardingCost, runningCost):\n \"\"\"\n :type customers: List[int]\n :type boardingCost: int\n :type runningCost: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minOperationsMaxProfit(self, customers: List[int], boardingCost: int, runningCost: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint minOperationsMaxProfit(int* customers, int customersSize, int boardingCost, int runningCost){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinOperationsMaxProfit(int[] customers, int boardingCost, int runningCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} customers\n * @param {number} boardingCost\n * @param {number} runningCost\n * @return {number}\n */\nvar minOperationsMaxProfit = function(customers, boardingCost, runningCost) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} customers\n# @param {Integer} boarding_cost\n# @param {Integer} running_cost\n# @return {Integer}\ndef min_operations_max_profit(customers, boarding_cost, running_cost)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minOperationsMaxProfit(_ customers: [Int], _ boardingCost: Int, _ runningCost: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minOperationsMaxProfit(customers []int, boardingCost int, runningCost int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minOperationsMaxProfit(customers: Array[Int], boardingCost: Int, runningCost: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minOperationsMaxProfit(customers: IntArray, boardingCost: Int, runningCost: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn min_operations_max_profit(customers: Vec, boarding_cost: i32, running_cost: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $customers\n * @param Integer $boardingCost\n * @param Integer $runningCost\n * @return Integer\n */\n function minOperationsMaxProfit($customers, $boardingCost, $runningCost) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minOperationsMaxProfit(customers: number[], boardingCost: number, runningCost: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (min-operations-max-profit customers boardingCost runningCost)\n (-> (listof exact-integer?) exact-integer? exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec min_operations_max_profit(Customers :: [integer()], BoardingCost :: integer(), RunningCost :: integer()) -> integer().\nmin_operations_max_profit(Customers, BoardingCost, RunningCost) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec min_operations_max_profit(customers :: [integer], boarding_cost :: integer, running_cost :: integer) :: integer\n def min_operations_max_profit(customers, boarding_cost, running_cost) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"9.7K\", \"totalSubmission\": \"22K\", \"totalAcceptedRaw\": 9671, \"totalSubmissionRaw\": 22007, \"acRate\": \"43.9%\"}", "hints": [ "Think simulation", "Note that the number of turns will never be more than 50 / 4 * n" ], "solution": null, "status": null, "sampleTestCase": "[8,3]\n5\n6", "metaData": "{\n \"name\": \"minOperationsMaxProfit\",\n \"params\": [\n {\n \"name\": \"customers\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"boardingCost\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"runningCost\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }