{ "data": { "question": { "questionId": "169", "questionFrontendId": "169", "boundTopicId": null, "title": "Majority Element", "titleSlug": "majority-element", "content": "
Given an array nums
of size n
, return the majority element.
The majority element is the element that appears more than ⌊n / 2⌋
times. You may assume that the majority element always exists in the array.
\n
Example 1:
\nInput: nums = [3,2,3]\nOutput: 3\n
Example 2:
\nInput: nums = [2,2,1,1,1,2,2]\nOutput: 2\n\n
\n
Constraints:
\n\nn == nums.length
1 <= n <= 5 * 104
-109 <= nums[i] <= 109
\nFollow-up: Could you solve the problem in linear time and in
O(1)
space?",
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 9402,
"dislikes": 333,
"isLiked": null,
"similarQuestions": "[{\"title\": \"Majority Element II\", \"titleSlug\": \"majority-element-ii\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Check If a Number Is Majority Element in a Sorted Array\", \"titleSlug\": \"check-if-a-number-is-majority-element-in-a-sorted-array\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]",
"exampleTestcases": "[3,2,3]\n[2,2,1,1,1,2,2]",
"categoryTitle": "Algorithms",
"contributors": [],
"topicTags": [
{
"name": "Array",
"slug": "array",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Hash Table",
"slug": "hash-table",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Divide and Conquer",
"slug": "divide-and-conquer",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Sorting",
"slug": "sorting",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Counting",
"slug": "counting",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "C++",
"langSlug": "cpp",
"code": "class Solution {\npublic:\n int majorityElement(vectorCompiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.