{ "data": { "question": { "questionId": "502", "questionFrontendId": "502", "boundTopicId": null, "title": "IPO", "titleSlug": "ipo", "content": "

Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Capital, LeetCode would like to work on some projects to increase its capital before the IPO. Since it has limited resources, it can only finish at most k distinct projects before the IPO. Help LeetCode design the best way to maximize its total capital after finishing at most k distinct projects.

\n\n

You are given n projects where the ith project has a pure profit profits[i] and a minimum capital of capital[i] is needed to start it.

\n\n

Initially, you have w capital. When you finish a project, you will obtain its pure profit and the profit will be added to your total capital.

\n\n

Pick a list of at most k distinct projects from given projects to maximize your final capital, and return the final maximized capital.

\n\n

The answer is guaranteed to fit in a 32-bit signed integer.

\n\n

 

\n

Example 1:

\n\n
\nInput: k = 2, w = 0, profits = [1,2,3], capital = [0,1,1]\nOutput: 4\nExplanation: Since your initial capital is 0, you can only start the project indexed 0.\nAfter finishing it you will obtain profit 1 and your capital becomes 1.\nWith capital 1, you can either start the project indexed 1 or the project indexed 2.\nSince you can choose at most 2 projects, you need to finish the project indexed 2 to get the maximum capital.\nTherefore, output the final maximized capital, which is 0 + 1 + 3 = 4.\n
\n\n

Example 2:

\n\n
\nInput: k = 3, w = 0, profits = [1,2,3], capital = [0,1,2]\nOutput: 6\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 782, "dislikes": 70, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "2\n0\n[1,2,3]\n[0,1,1]\n3\n0\n[1,2,3]\n[0,1,2]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int findMaximizedCapital(int k, int w, vector& profits, vector& capital) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int findMaximizedCapital(int k, int w, int[] profits, int[] capital) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def findMaximizedCapital(self, k, w, profits, capital):\n \"\"\"\n :type k: int\n :type w: int\n :type profits: List[int]\n :type capital: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def findMaximizedCapital(self, k: int, w: int, profits: List[int], capital: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint findMaximizedCapital(int k, int w, int* profits, int profitsSize, int* capital, int capitalSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int FindMaximizedCapital(int k, int w, int[] profits, int[] capital) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} k\n * @param {number} w\n * @param {number[]} profits\n * @param {number[]} capital\n * @return {number}\n */\nvar findMaximizedCapital = function(k, w, profits, capital) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer} k\n# @param {Integer} w\n# @param {Integer[]} profits\n# @param {Integer[]} capital\n# @return {Integer}\ndef find_maximized_capital(k, w, profits, capital)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func findMaximizedCapital(_ k: Int, _ w: Int, _ profits: [Int], _ capital: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func findMaximizedCapital(k int, w int, profits []int, capital []int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def findMaximizedCapital(k: Int, w: Int, profits: Array[Int], capital: Array[Int]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun findMaximizedCapital(k: Int, w: Int, profits: IntArray, capital: IntArray): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn find_maximized_capital(k: i32, w: i32, profits: Vec, capital: Vec) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer $k\n * @param Integer $w\n * @param Integer[] $profits\n * @param Integer[] $capital\n * @return Integer\n */\n function findMaximizedCapital($k, $w, $profits, $capital) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function findMaximizedCapital(k: number, w: number, profits: number[], capital: number[]): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (find-maximized-capital k w profits capital)\n (-> exact-integer? exact-integer? (listof exact-integer?) (listof exact-integer?) exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec find_maximized_capital(K :: integer(), W :: integer(), Profits :: [integer()], Capital :: [integer()]) -> integer().\nfind_maximized_capital(K, W, Profits, Capital) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec find_maximized_capital(k :: integer, w :: integer, profits :: [integer], capital :: [integer]) :: integer\n def find_maximized_capital(k, w, profits, capital) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"32.3K\", \"totalSubmission\": \"73.4K\", \"totalAcceptedRaw\": 32333, \"totalSubmissionRaw\": 73414, \"acRate\": \"44.0%\"}", "hints": [], "solution": { "id": "739", "canSeeDetail": false, "paidOnly": true, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "2\n0\n[1,2,3]\n[0,1,1]", "metaData": "{\n \"name\": \"findMaximizedCapital\",\n \"params\": [\n {\n \"name\": \"k\",\n \"type\": \"integer\"\n },\n {\n \"name\": \"w\",\n \"type\": \"integer\"\n },\n {\n \"name\": \"profits\",\n \"type\": \"integer[]\"\n },\n {\n \"name\": \"capital\",\n \"type\": \"integer[]\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }