{ "data": { "question": { "questionId": "2320", "questionFrontendId": "2200", "boundTopicId": null, "title": "Find All K-Distant Indices in an Array", "titleSlug": "find-all-k-distant-indices-in-an-array", "content": "

You are given a 0-indexed integer array nums and two integers key and k. A k-distant index is an index i of nums for which there exists at least one index j such that |i - j| <= k and nums[j] == key.

\n\n

Return a list of all k-distant indices sorted in increasing order.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums = [3,4,9,1,3,9,5], key = 9, k = 1\nOutput: [1,2,3,4,5,6]\nExplanation: Here, nums[2] == key and nums[5] == key.\n- For index 0, |0 - 2| > k and |0 - 5| > k, so there is no j where |0 - j| <= k and nums[j] == key. Thus, 0 is not a k-distant index.\n- For index 1, |1 - 2| <= k and nums[2] == key, so 1 is a k-distant index.\n- For index 2, |2 - 2| <= k and nums[2] == key, so 2 is a k-distant index.\n- For index 3, |3 - 2| <= k and nums[2] == key, so 3 is a k-distant index.\n- For index 4, |4 - 5| <= k and nums[5] == key, so 4 is a k-distant index.\n- For index 5, |5 - 5| <= k and nums[5] == key, so 5 is a k-distant index.\n- For index 6, |6 - 5| <= k and nums[5] == key, so 6 is a k-distant index.\nThus, we return [1,2,3,4,5,6] which is sorted in increasing order. \n
\n\n

Example 2:

\n\n
\nInput: nums = [2,2,2,2,2], key = 2, k = 2\nOutput: [0,1,2,3,4]\nExplanation: For all indices i in nums, there exists some index j such that |i - j| <= k and nums[j] == key, so every index is a k-distant index. \nHence, we return [0,1,2,3,4].\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 187, "dislikes": 27, "isLiked": null, "similarQuestions": "[{\"title\": \"Two Sum\", \"titleSlug\": \"two-sum\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Shortest Word Distance\", \"titleSlug\": \"shortest-word-distance\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]", "exampleTestcases": "[3,4,9,1,3,9,5]\n9\n1\n[2,2,2,2,2]\n2\n2", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector findKDistantIndices(vector& nums, int key, int k) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public List findKDistantIndices(int[] nums, int key, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def findKDistantIndices(self, nums, key, k):\n \"\"\"\n :type nums: List[int]\n :type key: int\n :type k: int\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def findKDistantIndices(self, nums: List[int], key: int, k: int) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\n/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* findKDistantIndices(int* nums, int numsSize, int key, int k, int* returnSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public IList FindKDistantIndices(int[] nums, int key, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number} key\n * @param {number} k\n * @return {number[]}\n */\nvar findKDistantIndices = function(nums, key, k) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer} key\n# @param {Integer} k\n# @return {Integer[]}\ndef find_k_distant_indices(nums, key, k)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func findKDistantIndices(_ nums: [Int], _ key: Int, _ k: Int) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func findKDistantIndices(nums []int, key int, k int) []int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def findKDistantIndices(nums: Array[Int], key: Int, k: Int): List[Int] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun findKDistantIndices(nums: IntArray, key: Int, k: Int): List {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn find_k_distant_indices(nums: Vec, key: i32, k: i32) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer $key\n * @param Integer $k\n * @return Integer[]\n */\n function findKDistantIndices($nums, $key, $k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function findKDistantIndices(nums: number[], key: number, k: number): number[] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (find-k-distant-indices nums key k)\n (-> (listof exact-integer?) exact-integer? exact-integer? (listof exact-integer?))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec find_k_distant_indices(Nums :: [integer()], Key :: integer(), K :: integer()) -> [integer()].\nfind_k_distant_indices(Nums, Key, K) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec find_k_distant_indices(nums :: [integer], key :: integer, k :: integer) :: [integer]\n def find_k_distant_indices(nums, key, k) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"21.7K\", \"totalSubmission\": \"33.7K\", \"totalAcceptedRaw\": 21678, \"totalSubmissionRaw\": 33729, \"acRate\": \"64.3%\"}", "hints": [ "For every occurrence of key in nums, find all indices within distance k from it.", "Use a hash table to remove duplicate indices." ], "solution": null, "status": null, "sampleTestCase": "[3,4,9,1,3,9,5]\n9\n1", "metaData": "{\n \"name\": \"findKDistantIndices\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"key\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"list\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }