{ "data": { "question": { "questionId": "2320", "questionFrontendId": "2200", "boundTopicId": null, "title": "Find All K-Distant Indices in an Array", "titleSlug": "find-all-k-distant-indices-in-an-array", "content": "
You are given a 0-indexed integer array nums
and two integers key
and k
. A k-distant index is an index i
of nums
for which there exists at least one index j
such that |i - j| <= k
and nums[j] == key
.
Return a list of all k-distant indices sorted in increasing order.
\n\n\n
Example 1:
\n\n\nInput: nums = [3,4,9,1,3,9,5], key = 9, k = 1\nOutput: [1,2,3,4,5,6]\nExplanation: Here,\n\nnums[2] == key
andnums[5] == key.\n- For index 0, |0 - 2| > k and |0 - 5| > k, so there is no j
where|0 - j| <= k
andnums[j] == key. Thus, 0 is not a k-distant index.\n- For index 1, |1 - 2| <= k and nums[2] == key, so 1 is a k-distant index.\n- For index 2, |2 - 2| <= k and nums[2] == key, so 2 is a k-distant index.\n- For index 3, |3 - 2| <= k and nums[2] == key, so 3 is a k-distant index.\n- For index 4, |4 - 5| <= k and nums[5] == key, so 4 is a k-distant index.\n- For index 5, |5 - 5| <= k and nums[5] == key, so 5 is a k-distant index.\n- For index 6, |6 - 5| <= k and nums[5] == key, so 6 is a k-distant index.\n
Thus, we return [1,2,3,4,5,6] which is sorted in increasing order. \n
Example 2:
\n\n\nInput: nums = [2,2,2,2,2], key = 2, k = 2\nOutput: [0,1,2,3,4]\nExplanation: For all indices i in nums, there exists some index j such that |i - j| <= k and nums[j] == key, so every index is a k-distant index. \nHence, we return [0,1,2,3,4].\n\n\n
\n
Constraints:
\n\n1 <= nums.length <= 1000
1 <= nums[i] <= 1000
key
is an integer from the array nums
.1 <= k <= nums.length
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.