{ "data": { "question": { "questionId": "636", "questionFrontendId": "636", "boundTopicId": null, "title": "Exclusive Time of Functions", "titleSlug": "exclusive-time-of-functions", "content": "
On a single-threaded CPU, we execute a program containing n
functions. Each function has a unique ID between 0
and n-1
.
Function calls are stored in a call stack: when a function call starts, its ID is pushed onto the stack, and when a function call ends, its ID is popped off the stack. The function whose ID is at the top of the stack is the current function being executed. Each time a function starts or ends, we write a log with the ID, whether it started or ended, and the timestamp.
\n\nYou are given a list logs
, where logs[i]
represents the ith
log message formatted as a string "{function_id}:{"start" | "end"}:{timestamp}"
. For example, "0:start:3"
means a function call with function ID 0
started at the beginning of timestamp 3
, and "1:end:2"
means a function call with function ID 1
ended at the end of timestamp 2
. Note that a function can be called multiple times, possibly recursively.
A function's exclusive time is the sum of execution times for all function calls in the program. For example, if a function is called twice, one call executing for 2
time units and another call executing for 1
time unit, the exclusive time is 2 + 1 = 3
.
Return the exclusive time of each function in an array, where the value at the ith
index represents the exclusive time for the function with ID i
.
\n
Example 1:
\n\n\nInput: n = 2, logs = ["0:start:0","1:start:2","1:end:5","0:end:6"]\nOutput: [3,4]\nExplanation:\nFunction 0 starts at the beginning of time 0, then it executes 2 for units of time and reaches the end of time 1.\nFunction 1 starts at the beginning of time 2, executes for 4 units of time, and ends at the end of time 5.\nFunction 0 resumes execution at the beginning of time 6 and executes for 1 unit of time.\nSo function 0 spends 2 + 1 = 3 units of total time executing, and function 1 spends 4 units of total time executing.\n\n\n
Example 2:
\n\n\nInput: n = 1, logs = ["0:start:0","0:start:2","0:end:5","0:start:6","0:end:6","0:end:7"]\nOutput: [8]\nExplanation:\nFunction 0 starts at the beginning of time 0, executes for 2 units of time, and recursively calls itself.\nFunction 0 (recursive call) starts at the beginning of time 2 and executes for 4 units of time.\nFunction 0 (initial call) resumes execution then immediately calls itself again.\nFunction 0 (2nd recursive call) starts at the beginning of time 6 and executes for 1 unit of time.\nFunction 0 (initial call) resumes execution at the beginning of time 7 and executes for 1 unit of time.\nSo function 0 spends 2 + 4 + 1 + 1 = 8 units of total time executing.\n\n\n
Example 3:
\n\n\nInput: n = 2, logs = ["0:start:0","0:start:2","0:end:5","1:start:6","1:end:6","0:end:7"]\nOutput: [7,1]\nExplanation:\nFunction 0 starts at the beginning of time 0, executes for 2 units of time, and recursively calls itself.\nFunction 0 (recursive call) starts at the beginning of time 2 and executes for 4 units of time.\nFunction 0 (initial call) resumes execution then immediately calls function 1.\nFunction 1 starts at the beginning of time 6, executes 1 unit of time, and ends at the end of time 6.\nFunction 0 resumes execution at the beginning of time 6 and executes for 2 units of time.\nSo function 0 spends 2 + 4 + 1 = 7 units of total time executing, and function 1 spends 1 unit of total time executing.\n\n\n
\n
Constraints:
\n\n1 <= n <= 100
1 <= logs.length <= 500
0 <= function_id < n
0 <= timestamp <= 109
"end"
log for each "start"
log.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.