{ "data": { "question": { "questionId": "2168", "questionFrontendId": "2042", "boundTopicId": null, "title": "Check if Numbers Are Ascending in a Sentence", "titleSlug": "check-if-numbers-are-ascending-in-a-sentence", "content": "
A sentence is a list of tokens separated by a single space with no leading or trailing spaces. Every token is either a positive number consisting of digits 0-9
with no leading zeros, or a word consisting of lowercase English letters.
"a puppy has 2 eyes 4 legs"
is a sentence with seven tokens: "2"
and "4"
are numbers and the other tokens such as "puppy"
are words.Given a string s
representing a sentence, you need to check if all the numbers in s
are strictly increasing from left to right (i.e., other than the last number, each number is strictly smaller than the number on its right in s
).
Return true
if so, or false
otherwise.
\n
Example 1:
\n\n\nInput: s = "1 box has 3 blue 4 red 6 green and 12 yellow marbles"\nOutput: true\nExplanation: The numbers in s are: 1, 3, 4, 6, 12.\nThey are strictly increasing from left to right: 1 < 3 < 4 < 6 < 12.\n\n\n
Example 2:
\n\n\nInput: s = "hello world 5 x 5"\nOutput: false\nExplanation: The numbers in s are: 5, 5. They are not strictly increasing.\n\n\n
Example 3:
\n\n\nInput: s = "sunset is at 7 51 pm overnight lows will be in the low 50 and 60 s"\nOutput: false\nExplanation: The numbers in s are: 7, 51, 50, 60. They are not strictly increasing.\n\n\n
\n
Constraints:
\n\n3 <= s.length <= 200
s
consists of lowercase English letters, spaces, and digits from 0
to 9
, inclusive.s
is between 2
and 100
, inclusive.s
are separated by a single space.s
.s
is a positive number less than 100
, with no leading zeros.s
contains no leading or trailing spaces.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.