{ "data": { "question": { "questionId": "1612", "questionFrontendId": "1488", "boundTopicId": null, "title": "Avoid Flood in The City", "titleSlug": "avoid-flood-in-the-city", "content": "
Your country has an infinite number of lakes. Initially, all the lakes are empty, but when it rains over the nth
lake, the nth
lake becomes full of water. If it rains over a lake that is full of water, there will be a flood. Your goal is to avoid floods in any lake.
Given an integer array rains
where:
rains[i] > 0
means there will be rains over the rains[i]
lake.rains[i] == 0
means there are no rains this day and you can choose one lake this day and dry it.Return an array ans
where:
ans.length == rains.length
ans[i] == -1
if rains[i] > 0
.ans[i]
is the lake you choose to dry in the ith
day if rains[i] == 0
.If there are multiple valid answers return any of them. If it is impossible to avoid flood return an empty array.
\n\nNotice that if you chose to dry a full lake, it becomes empty, but if you chose to dry an empty lake, nothing changes.
\n\n\n
Example 1:
\n\n\nInput: rains = [1,2,3,4]\nOutput: [-1,-1,-1,-1]\nExplanation: After the first day full lakes are [1]\nAfter the second day full lakes are [1,2]\nAfter the third day full lakes are [1,2,3]\nAfter the fourth day full lakes are [1,2,3,4]\nThere's no day to dry any lake and there is no flood in any lake.\n\n\n
Example 2:
\n\n\nInput: rains = [1,2,0,0,2,1]\nOutput: [-1,-1,2,1,-1,-1]\nExplanation: After the first day full lakes are [1]\nAfter the second day full lakes are [1,2]\nAfter the third day, we dry lake 2. Full lakes are [1]\nAfter the fourth day, we dry lake 1. There is no full lakes.\nAfter the fifth day, full lakes are [2].\nAfter the sixth day, full lakes are [1,2].\nIt is easy that this scenario is flood-free. [-1,-1,1,2,-1,-1] is another acceptable scenario.\n\n\n
Example 3:
\n\n\nInput: rains = [1,2,0,1,2]\nOutput: []\nExplanation: After the second day, full lakes are [1,2]. We have to dry one lake in the third day.\nAfter that, it will rain over lakes [1,2]. It's easy to prove that no matter which lake you choose to dry in the 3rd day, the other one will flood.\n\n\n
\n
Constraints:
\n\n1 <= rains.length <= 105
0 <= rains[i] <= 109
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.