{ "data": { "question": { "questionId": "2068", "questionFrontendId": "1938", "categoryTitle": "Algorithms", "boundTopicId": 875344, "title": "Maximum Genetic Difference Query", "titleSlug": "maximum-genetic-difference-query", "content": "

There is a rooted tree consisting of n nodes numbered 0 to n - 1. Each node's number denotes its unique genetic value (i.e. the genetic value of node x is x). The genetic difference between two genetic values is defined as the bitwise-XOR of their values. You are given the integer array parents, where parents[i] is the parent for node i. If node x is the root of the tree, then parents[x] == -1.

\n\n

You are also given the array queries where queries[i] = [nodei, vali]. For each query i, find the maximum genetic difference between vali and pi, where pi is the genetic value of any node that is on the path between nodei and the root (including nodei and the root). More formally, you want to maximize vali XOR pi.

\n\n

Return an array ans where ans[i] is the answer to the ith query.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: parents = [-1,0,1,1], queries = [[0,2],[3,2],[2,5]]\nOutput: [2,3,7]\nExplanation: The queries are processed as follows:\n- [0,2]: The node with the maximum genetic difference is 0, with a difference of 2 XOR 0 = 2.\n- [3,2]: The node with the maximum genetic difference is 1, with a difference of 2 XOR 1 = 3.\n- [2,5]: The node with the maximum genetic difference is 2, with a difference of 5 XOR 2 = 7.\n
\n\n

Example 2:

\n\"\"\n
\nInput: parents = [3,7,-1,2,0,7,0,2], queries = [[4,6],[1,15],[0,5]]\nOutput: [6,14,7]\nExplanation: The queries are processed as follows:\n- [4,6]: The node with the maximum genetic difference is 0, with a difference of 6 XOR 0 = 6.\n- [1,15]: The node with the maximum genetic difference is 1, with a difference of 15 XOR 1 = 14.\n- [0,5]: The node with the maximum genetic difference is 2, with a difference of 5 XOR 2 = 7.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": "查询最大基因差", "translatedContent": "

给你一棵 n 个节点的有根树,节点编号从 0 到 n - 1 。每个节点的编号表示这个节点的 独一无二的基因值 (也就是说节点 x 的基因值为 x)。两个基因值的 基因差 是两者的 异或和 。给你整数数组 parents ,其中 parents[i] 是节点 i 的父节点。如果节点 x 是树的  ,那么 parents[x] == -1 。

\n\n

给你查询数组 queries ,其中 queries[i] = [nodei, vali] 。对于查询 i ,请你找到 vali 和 pi 的 最大基因差 ,其中 pi 是节点 nodei 到根之间的任意节点(包含 nodei 和根节点)。更正式的,你想要最大化 vali XOR pi 

\n\n

请你返回数组 ans ,其中 ans[i] 是第 i 个查询的答案。

\n\n

 

\n\n

示例 1:

\n\"\"\n
输入:parents = [-1,0,1,1], queries = [[0,2],[3,2],[2,5]]\n输出:[2,3,7]\n解释:查询数组处理如下:\n- [0,2]:最大基因差的对应节点为 0 ,基因差为 2 XOR 0 = 2 。\n- [3,2]:最大基因差的对应节点为 1 ,基因差为 2 XOR 1 = 3 。\n- [2,5]:最大基因差的对应节点为 2 ,基因差为 5 XOR 2 = 7 。\n
\n\n

示例 2:

\n\"\"\n
输入:parents = [3,7,-1,2,0,7,0,2], queries = [[4,6],[1,15],[0,5]]\n输出:[6,14,7]\n解释:查询数组处理如下:\n- [4,6]:最大基因差的对应节点为 0 ,基因差为 6 XOR 0 = 6 。\n- [1,15]:最大基因差的对应节点为 1 ,基因差为 15 XOR 1 = 14 。\n- [0,5]:最大基因差的对应节点为 2 ,基因差为 5 XOR 2 = 7 。\n
\n\n

 

\n\n

提示:

\n\n\n", "isPaidOnly": false, "difficulty": "Hard", "likes": 37, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": true, \"python\": true, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"ruby\": false, \"bash\": false, \"swift\": false, \"golang\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"kotlin\": false, \"rust\": false, \"php\": false, \"typescript\": false, \"racket\": false, \"erlang\": false, \"elixir\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector maxGeneticDifference(vector& parents, vector>& queries) {\n\n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[] maxGeneticDifference(int[] parents, int[][] queries) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maxGeneticDifference(self, parents, queries):\n \"\"\"\n :type parents: List[int]\n :type queries: List[List[int]]\n :rtype: List[int]\n \"\"\"", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maxGeneticDifference(self, parents: List[int], queries: List[List[int]]) -> List[int]:", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\n/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* maxGeneticDifference(int* parents, int parentsSize, int** queries, int queriesSize, int* queriesColSize, int* returnSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[] MaxGeneticDifference(int[] parents, int[][] queries) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} parents\n * @param {number[][]} queries\n * @return {number[]}\n */\nvar maxGeneticDifference = function(parents, queries) {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} parents\n# @param {Integer[][]} queries\n# @return {Integer[]}\ndef max_genetic_difference(parents, queries)\n\nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maxGeneticDifference(_ parents: [Int], _ queries: [[Int]]) -> [Int] {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maxGeneticDifference(parents []int, queries [][]int) []int {\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maxGeneticDifference(parents: Array[Int], queries: Array[Array[Int]]): Array[Int] = {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maxGeneticDifference(parents: IntArray, queries: Array): IntArray {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn max_genetic_difference(parents: Vec, queries: Vec>) -> Vec {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $parents\n * @param Integer[][] $queries\n * @return Integer[]\n */\n function maxGeneticDifference($parents, $queries) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maxGeneticDifference(parents: number[], queries: number[][]): number[] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (max-genetic-difference parents queries)\n (-> (listof exact-integer?) (listof (listof exact-integer?)) (listof exact-integer?))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec max_genetic_difference(Parents :: [integer()], Queries :: [[integer()]]) -> [integer()].\nmax_genetic_difference(Parents, Queries) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec max_genetic_difference(parents :: [integer], queries :: [[integer]]) :: [integer]\n def max_genetic_difference(parents, queries) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.3K\", \"totalSubmission\": \"3.6K\", \"totalAcceptedRaw\": 1331, \"totalSubmissionRaw\": 3650, \"acRate\": \"36.5%\"}", "hints": [ "How can we use a trie to store all the XOR values in the path from a node to the root?", "How can we dynamically add the XOR values with a DFS search?" ], "solution": null, "status": null, "sampleTestCase": "[-1,0,1,1]\n[[0,2],[3,2],[2,5]]", "metaData": "{\n \"name\": \"maxGeneticDifference\",\n \"params\": [\n {\n \"name\": \"parents\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"queries\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"cpp\":[\"C++\",\"

\\u7248\\u672c\\uff1aclang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 17\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n

\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4bout-of-bounds<\\/code>\\u548cuse-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\"

\\u7248\\u672c\\uff1aOpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\"

\\u7248\\u672c\\uff1a Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u6ce8\\u610f Python 2.7 \\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\"

\\u7248\\u672c\\uff1aGCC 8.2<\\/code>\\uff0c\\u91c7\\u7528GNU99\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n

\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528-O1<\\/code>\\u7ea7\\u4f18\\u5316\\u3002 AddressSanitizer<\\/a>\\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4bout-of-bounds<\\/code>\\u548cuse-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n

1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            \\/* we'll use this field as the key *\\/\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n

2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n

3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"

C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\\r\\n\\r\\n

\\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u7f16\\u8bd1\\u65f6\\u9ed8\\u8ba4\\u5f00\\u542f\\u4e86debug\\u6807\\u8bb0(\\/debug:pdbonly<\\/code>)\\u3002<\\/p>\"],\"javascript\":[\"JavaScript\",\"

\\u7248\\u672c\\uff1aNode.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n

\\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a --harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n

lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue<\\/a> \\u548c datastructures-js\\/queue<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\"

\\u4f7f\\u7528Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n

\\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\"

\\u7248\\u672c\\uff1aSwift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n

\\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\"

\\u7248\\u672c\\uff1aGo 1.17<\\/code><\\/p>\\r\\n\\r\\n

\\u652f\\u6301 https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\"

\\u7248\\u672c\\uff1aPython 3.10<\\/code><\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\"

\\u7248\\u672c\\uff1aScala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"

\\u7248\\u672c\\uff1aKotlin 1.3.10<\\/code><\\/p>\"],\"rust\":[\"Rust\",\"

\\u7248\\u672c\\uff1arust 1.58.1<\\/code><\\/p>\\r\\n\\r\\n

\\u652f\\u6301 crates.io \\u7684 rand<\\/a><\\/p>\"],\"php\":[\"PHP\",\"

PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n

With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\"

TypeScript 4.5.4<\\/p>\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2020<\\/p>\"],\"racket\":[\"Racket\",\"

Racket CS<\\/a> v8.3<\\/p>\\r\\n\\r\\n

\\u4f7f\\u7528 #lang racket<\\/p>\\r\\n\\r\\n

\\u5df2\\u9884\\u5148 (require data\\/gvector data\\/queue data\\/order data\\/heap). \\u82e5\\u9700\\u4f7f\\u7528\\u5176\\u5b83\\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u53ef\\u81ea\\u884c require\\u3002<\\/p>\"],\"erlang\":[\"Erlang\",\"Erlang\\/OTP 24.2\"],\"elixir\":[\"Elixir\",\"Elixir 1.13.0 with Erlang\\/OTP 24.2\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "[-1,0,1,1]\n[[0,2],[3,2],[2,5]]\n[3,7,-1,2,0,7,0,2]\n[[4,6],[1,15],[0,5]]", "__typename": "QuestionNode" } } }