{ "data": { "question": { "questionId": "773", "questionFrontendId": "558", "categoryTitle": "Algorithms", "boundTopicId": 1787, "title": "Logical OR of Two Binary Grids Represented as Quad-Trees", "titleSlug": "logical-or-of-two-binary-grids-represented-as-quad-trees", "content": "
A Binary Matrix is a matrix in which all the elements are either 0 or 1.
\n\nGiven quadTree1
and quadTree2
. quadTree1
represents a n * n
binary matrix and quadTree2
represents another n * n
binary matrix.
Return a Quad-Tree representing the n * n
binary matrix which is the result of logical bitwise OR of the two binary matrixes represented by quadTree1
and quadTree2
.
Notice that you can assign the value of a node to True or False when isLeaf
is False, and both are accepted in the answer.
A Quad-Tree is a tree data structure in which each internal node has exactly four children. Besides, each node has two attributes:
\n\nval
: True if the node represents a grid of 1's or False if the node represents a grid of 0's.isLeaf
: True if the node is leaf node on the tree or False if the node has the four children.\nclass Node {\n public boolean val;\n public boolean isLeaf;\n public Node topLeft;\n public Node topRight;\n public Node bottomLeft;\n public Node bottomRight;\n}\n\n
We can construct a Quad-Tree from a two-dimensional area using the following steps:
\n\n1's
or all 0's
) set isLeaf
True and set val
to the value of the grid and set the four children to Null and stop.isLeaf
to False and set val
to any value and divide the current grid into four sub-grids as shown in the photo.If you want to know more about the Quad-Tree, you can refer to the wiki.
\n\nQuad-Tree format:
\n\nThe input/output represents the serialized format of a Quad-Tree using level order traversal, where null
signifies a path terminator where no node exists below.
It is very similar to the serialization of the binary tree. The only difference is that the node is represented as a list [isLeaf, val]
.
If the value of isLeaf
or val
is True we represent it as 1 in the list [isLeaf, val]
and if the value of isLeaf
or val
is False we represent it as 0.
\n
Example 1:
\n \n\nInput: quadTree1 = [[0,1],[1,1],[1,1],[1,0],[1,0]]\n, quadTree2 = [[0,1],[1,1],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]\nOutput: [[0,0],[1,1],[1,1],[1,1],[1,0]]\nExplanation: quadTree1 and quadTree2 are shown above. You can see the binary matrix which is represented by each Quad-Tree.\nIf we apply logical bitwise OR on the two binary matrices we get the binary matrix below which is represented by the result Quad-Tree.\nNotice that the binary matrices shown are only for illustration, you don't have to construct the binary matrix to get the result tree.\n\n\n\n
Example 2:
\n\n\nInput: quadTree1 = [[1,0]], quadTree2 = [[1,0]]\nOutput: [[1,0]]\nExplanation: Each tree represents a binary matrix of size 1*1. Each matrix contains only zero.\nThe resulting matrix is of size 1*1 with also zero.\n\n\n
\n
Constraints:
\n\nquadTree1
and quadTree2
are both valid Quad-Trees each representing a n * n
grid.n == 2x
where 0 <= x <= 9
.二进制矩阵中的所有元素不是 0 就是 1 。
\n\n给你两个四叉树,quadTree1
和 quadTree2
。其中 quadTree1
表示一个 n * n
二进制矩阵,而 quadTree2
表示另一个 n * n
二进制矩阵。
请你返回一个表示 n * n
二进制矩阵的四叉树,它是 quadTree1
和 quadTree2
所表示的两个二进制矩阵进行 按位逻辑或运算 的结果。
注意,当 isLeaf
为 False 时,你可以把 True 或者 False 赋值给节点,两种值都会被判题机制 接受 。
四叉树数据结构中,每个内部节点只有四个子节点。此外,每个节点都有两个属性:
\n\nval
:储存叶子结点所代表的区域的值。1 对应 True,0 对应 False;isLeaf
: 当这个节点是一个叶子结点时为 True,如果它有 4 个子节点则为 False 。\nclass Node {\n public boolean val;\n public boolean isLeaf;\n public Node topLeft;\n public Node topRight;\n public Node bottomLeft;\n public Node bottomRight;\n}\n\n
我们可以按以下步骤为二维区域构建四叉树:
\n\n0
或者全为 1
),将 isLeaf
设为 True ,将 val
设为网格相应的值,并将四个子节点都设为 Null 然后停止。isLeaf
设为 False, 将 val
设为任意值,然后如下图所示,将当前网格划分为四个子网格。如果你想了解更多关于四叉树的内容,可以参考 wiki 。
\n\n四叉树格式:
\n\n输出为使用层序遍历后四叉树的序列化形式,其中 null
表示路径终止符,其下面不存在节点。
它与二叉树的序列化非常相似。唯一的区别是节点以列表形式表示 [isLeaf, val]
。
如果 isLeaf
或者 val
的值为 True ,则表示它在列表 [isLeaf, val]
中的值为 1 ;如果 isLeaf
或者 val
的值为 False ,则表示值为 0 。
\n\n
示例 1:
\n\n\n\n
\n输入:quadTree1 = [[0,1],[1,1],[1,1],[1,0],[1,0]]\n, quadTree2 = [[0,1],[1,1],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]\n输出:[[0,0],[1,1],[1,1],[1,1],[1,0]]\n解释:quadTree1 和 quadTree2 如上所示。由四叉树所表示的二进制矩阵也已经给出。\n如果我们对这两个矩阵进行按位逻辑或运算,则可以得到下面的二进制矩阵,由一个作为结果的四叉树表示。\n注意,我们展示的二进制矩阵仅仅是为了更好地说明题意,你无需构造二进制矩阵来获得结果四叉树。\n\n\n\n
示例 2:
\n\n\n输入:quadTree1 = [[1,0]]\n, quadTree2 = [[1,0]]\n输出:[[1,0]]\n解释:两个数所表示的矩阵大小都为 1*1,值全为 0 \n结果矩阵大小为 1*1,值全为 0 。\n\n\n
示例 3:
\n\n\n输入:quadTree1 = [[0,0],[1,0],[1,0],[1,1],[1,1]]\n, quadTree2 = [[0,0],[1,1],[1,1],[1,0],[1,1]]\n输出:[[1,1]]\n\n\n
示例 4:
\n\n\n输入:quadTree1 = [[0,0],[1,1],[1,0],[1,1],[1,1]]\n, quadTree2 = [[0,0],[1,1],[0,1],[1,1],[1,1],null,null,null,null,[1,1],[1,0],[1,0],[1,1]]\n输出:[[0,0],[1,1],[0,1],[1,1],[1,1],null,null,null,null,[1,1],[1,0],[1,0],[1,1]]\n\n\n
示例 5:
\n\n\n输入:quadTree1 = [[0,1],[1,0],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]\n, quadTree2 = [[0,1],[0,1],[1,0],[1,1],[1,0],[1,0],[1,0],[1,1],[1,1]]\n输出:[[0,0],[0,1],[0,1],[1,1],[1,0],[1,0],[1,0],[1,1],[1,1],[1,0],[1,0],[1,1],[1,1]]\n\n\n
\n\n
提示:
\n\nquadTree1
和 quadTree2
都是符合题目要求的四叉树,每个都代表一个 n * n
的矩阵。n == 2^x
,其中 0 <= x <= 9
.\\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u6ce8\\u610f Python 2.7 \\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"csharp\":[\"C#\",\" C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\\r\\n\\r\\n \\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u7f16\\u8bd1\\u65f6\\u9ed8\\u8ba4\\u5f00\\u542f\\u4e86debug\\u6807\\u8bb0( \\u7248\\u672c\\uff1a \\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue<\\/a> \\u548c datastructures-js\\/queue<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\" \\u4f7f\\u7528 \\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\" \\u7248\\u672c\\uff1a \\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\" \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\" TypeScript 4.5.4<\\/p>\\r\\n\\r\\n Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2020<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "[[0,1],[1,1],[1,1],[1,0],[1,0]]\n[[0,1],[1,1],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]\n[[1,0]]\n[[1,0]]",
"__typename": "QuestionNode"
}
}
}clang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 17\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
OpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n
Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n
\\/debug:pdbonly<\\/code>)\\u3002<\\/p>\"],\"javascript\":[\"JavaScript\",\"
Node.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n
--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n
Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n
Swift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n
Go 1.17<\\/code><\\/p>\\r\\n\\r\\n
Python 3.10<\\/code><\\/p>\\r\\n\\r\\n
Scala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"
Kotlin 1.3.10<\\/code><\\/p>\"],\"php\":[\"PHP\",\"
PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n