{ "data": { "question": { "questionId": "2603", "questionFrontendId": "2512", "boundTopicId": null, "title": "Reward Top K Students", "titleSlug": "reward-top-k-students", "content": "
You are given two string arrays positive_feedback
and negative_feedback
, containing the words denoting positive and negative feedback, respectively. Note that no word is both positive and negative.
Initially every student has 0
points. Each positive word in a feedback report increases the points of a student by 3
, whereas each negative word decreases the points by 1
.
You are given n
feedback reports, represented by a 0-indexed string array report
and a 0-indexed integer array student_id
, where student_id[i]
represents the ID of the student who has received the feedback report report[i]
. The ID of each student is unique.
Given an integer k
, return the top k
students after ranking them in non-increasing order by their points. In case more than one student has the same points, the one with the lower ID ranks higher.
\n
Example 1:
\n\n\nInput: positive_feedback = ["smart","brilliant","studious"], negative_feedback = ["not"], report = ["this student is studious","the student is smart"], student_id = [1,2], k = 2\nOutput: [1,2]\nExplanation: \nBoth the students have 1 positive feedback and 3 points but since student 1 has a lower ID he ranks higher.\n\n\n
Example 2:
\n\n\nInput: positive_feedback = ["smart","brilliant","studious"], negative_feedback = ["not"], report = ["this student is not studious","the student is smart"], student_id = [1,2], k = 2\nOutput: [2,1]\nExplanation: \n- The student with ID 1 has 1 positive feedback and 1 negative feedback, so he has 3-1=2 points. \n- The student with ID 2 has 1 positive feedback, so he has 3 points. \nSince student 2 has more points, [2,1] is returned.\n\n\n
\n
Constraints:
\n\n1 <= positive_feedback.length, negative_feedback.length <= 104
1 <= positive_feedback[i].length, negative_feedback[j].length <= 100
positive_feedback[i]
and negative_feedback[j]
consists of lowercase English letters.positive_feedback
and negative_feedback
.n == report.length == student_id.length
1 <= n <= 104
report[i]
consists of lowercase English letters and spaces ' '
.report[i]
.1 <= report[i].length <= 100
1 <= student_id[i] <= 109
student_id[i]
are unique.1 <= k <= n
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }