{ "data": { "question": { "questionId": "1179", "questionFrontendId": "511", "boundTopicId": null, "title": "Game Play Analysis I", "titleSlug": "game-play-analysis-i", "content": "

Table: Activity

\n\n
\n+--------------+---------+\n| Column Name  | Type    |\n+--------------+---------+\n| player_id    | int     |\n| device_id    | int     |\n| event_date   | date    |\n| games_played | int     |\n+--------------+---------+\n(player_id, event_date) is the primary key (combination of columns with unique values) of this table.\nThis table shows the activity of players of some games.\nEach row is a record of a player who logged in and played a number of games (possibly 0) before logging out on someday using some device.\n
\n\n

 

\n\n

Write a solution to find the first login date for each player.

\n\n

Return the result table in any order.

\n\n

The result format is in the following example.

\n\n

 

\n

Example 1:

\n\n
\nInput: \nActivity table:\n+-----------+-----------+------------+--------------+\n| player_id | device_id | event_date | games_played |\n+-----------+-----------+------------+--------------+\n| 1         | 2         | 2016-03-01 | 5            |\n| 1         | 2         | 2016-05-02 | 6            |\n| 2         | 3         | 2017-06-25 | 1            |\n| 3         | 1         | 2016-03-02 | 0            |\n| 3         | 4         | 2018-07-03 | 5            |\n+-----------+-----------+------------+--------------+\nOutput: \n+-----------+-------------+\n| player_id | first_login |\n+-----------+-------------+\n| 1         | 2016-03-01  |\n| 2         | 2017-06-25  |\n| 3         | 2016-03-02  |\n+-----------+-------------+\n
\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 793, "dislikes": 26, "isLiked": null, "similarQuestions": "[{\"title\": \"Game Play Analysis II\", \"titleSlug\": \"game-play-analysis-ii\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]", "exampleTestcases": "{\"headers\":{\"Activity\":[\"player_id\",\"device_id\",\"event_date\",\"games_played\"]},\"rows\":{\"Activity\":[[1,2,\"2016-03-01\",5],[1,2,\"2016-05-02\",6],[2,3,\"2017-06-25\",1],[3,1,\"2016-03-02\",0],[3,4,\"2018-07-03\",5]]}}", "categoryTitle": "Database", "contributors": [], "topicTags": [ { "name": "Database", "slug": "database", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "MySQL", "langSlug": "mysql", "code": "# Write your MySQL query statement below\n", "__typename": "CodeSnippetNode" }, { "lang": "MS SQL Server", "langSlug": "mssql", "code": "/* Write your T-SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Oracle", "langSlug": "oraclesql", "code": "/* Write your PL/SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef game_analysis(activity: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" }, { "lang": "PostgreSQL", "langSlug": "postgresql", "code": "-- Write your PostgreSQL query statement below\n", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"233.9K\", \"totalSubmission\": \"314.9K\", \"totalAcceptedRaw\": 233886, \"totalSubmissionRaw\": 314853, \"acRate\": \"74.3%\"}", "hints": [], "solution": { "id": "1599", "canSeeDetail": false, "paidOnly": true, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"Activity\":[\"player_id\",\"device_id\",\"event_date\",\"games_played\"]},\"rows\":{\"Activity\":[[1,2,\"2016-03-01\",5],[1,2,\"2016-05-02\",6],[2,3,\"2017-06-25\",1],[3,1,\"2016-03-02\",0],[3,4,\"2018-07-03\",5]]}}", "metaData": "{\"mysql\": [\"Create table If Not Exists Activity (player_id int, device_id int, event_date date, games_played int)\"], \"mssql\": [\"Create table Activity (player_id int, device_id int, event_date date, games_played int)\"], \"oraclesql\": [\"Create table Activity (player_id int, device_id int, event_date date, games_played int)\", \"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"], \"database\": true, \"name\": \"game_analysis\", \"pythondata\": [\"Activity = pd.DataFrame([], columns=['player_id', 'device_id', 'event_date', 'games_played']).astype({'player_id':'Int64', 'device_id':'Int64', 'event_date':'datetime64[ns]', 'games_played':'Int64'})\"], \"manual\": false, \"postgresql\": [\"Create table If Not Exists Activity (player_id int, device_id int, event_date date, games_played int)\"], \"database_schema\": {\"Activity\": {\"player_id\": \"INT\", \"device_id\": \"INT\", \"event_date\": \"DATE\", \"games_played\": \"INT\"}}}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [ "Create table If Not Exists Activity (player_id int, device_id int, event_date date, games_played int)", "Truncate table Activity", "insert into Activity (player_id, device_id, event_date, games_played) values ('1', '2', '2016-03-01', '5')", "insert into Activity (player_id, device_id, event_date, games_played) values ('1', '2', '2016-05-02', '6')", "insert into Activity (player_id, device_id, event_date, games_played) values ('2', '3', '2017-06-25', '1')", "insert into Activity (player_id, device_id, event_date, games_played) values ('3', '1', '2016-03-02', '0')", "insert into Activity (player_id, device_id, event_date, games_played) values ('3', '4', '2018-07-03', '5')" ], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"mysql\": [\"MySQL\", \"

MySQL 8.0.

\"], \"mssql\": [\"MS SQL Server\", \"

mssql server 2019.

\"], \"oraclesql\": [\"Oracle\", \"

Oracle Sql 11.2.

\"], \"pythondata\": [\"Pandas\", \"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0

\"], \"postgresql\": [\"PostgreSQL\", \"

PostgreSQL 16

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }