{ "data": { "question": { "questionId": "821", "questionFrontendId": "803", "boundTopicId": null, "title": "Bricks Falling When Hit", "titleSlug": "bricks-falling-when-hit", "content": "
You are given an m x n
binary grid
, where each 1
represents a brick and 0
represents an empty space. A brick is stable if:
You are also given an array hits
, which is a sequence of erasures we want to apply. Each time we want to erase the brick at the location hits[i] = (rowi, coli)
. The brick on that location (if it exists) will disappear. Some other bricks may no longer be stable because of that erasure and will fall. Once a brick falls, it is immediately erased from the grid
(i.e., it does not land on other stable bricks).
Return an array result
, where each result[i]
is the number of bricks that will fall after the ith
erasure is applied.
Note that an erasure may refer to a location with no brick, and if it does, no bricks drop.
\n\n\n
Example 1:
\n\n\nInput: grid = [[1,0,0,0],[1,1,1,0]], hits = [[1,0]]\nOutput: [2]\nExplanation: Starting with the grid:\n[[1,0,0,0],\n [1,1,1,0]]\nWe erase the underlined brick at (1,0), resulting in the grid:\n[[1,0,0,0],\n [0,1,1,0]]\nThe two underlined bricks are no longer stable as they are no longer connected to the top nor adjacent to another stable brick, so they will fall. The resulting grid is:\n[[1,0,0,0],\n [0,0,0,0]]\nHence the result is [2].\n\n\n
Example 2:
\n\n\nInput: grid = [[1,0,0,0],[1,1,0,0]], hits = [[1,1],[1,0]]\nOutput: [0,0]\nExplanation: Starting with the grid:\n[[1,0,0,0],\n [1,1,0,0]]\nWe erase the underlined brick at (1,1), resulting in the grid:\n[[1,0,0,0],\n [1,0,0,0]]\nAll remaining bricks are still stable, so no bricks fall. The grid remains the same:\n[[1,0,0,0],\n [1,0,0,0]]\nNext, we erase the underlined brick at (1,0), resulting in the grid:\n[[1,0,0,0],\n [0,0,0,0]]\nOnce again, all remaining bricks are still stable, so no bricks fall.\nHence the result is [0,0].\n\n\n
\n
Constraints:
\n\nm == grid.length
n == grid[i].length
1 <= m, n <= 200
grid[i][j]
is 0
or 1
.1 <= hits.length <= 4 * 104
hits[i].length == 2
0 <= xi <= m - 1
0 <= yi <= n - 1
(xi, yi)
are unique.Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }