<p>You are given a 2D <strong>0-indexed </strong>integer array <code>dimensions</code>.</p> <p>For all indices <code>i</code>, <code>0 <= i < dimensions.length</code>, <code>dimensions[i][0]</code> represents the length and <code>dimensions[i][1]</code> represents the width of the rectangle<span style="font-size: 13.3333px;"> <code>i</code></span>.</p> <p>Return <em>the <strong>area</strong> of the rectangle having the <strong>longest</strong> diagonal. If there are multiple rectangles with the longest diagonal, return the area of the rectangle having the <strong>maximum</strong> area.</em></p> <p> </p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> dimensions = [[9,3],[8,6]] <strong>Output:</strong> 48 <strong>Explanation:</strong> For index = 0, length = 9 and width = 3. Diagonal length = sqrt(9 * 9 + 3 * 3) = sqrt(90) ≈<!-- notionvc: 882cf44c-3b17-428e-9c65-9940810216f1 --> 9.487. For index = 1, length = 8 and width = 6. Diagonal length = sqrt(8 * 8 + 6 * 6) = sqrt(100) = 10. So, the rectangle at index 1 has a greater diagonal length therefore we return area = 8 * 6 = 48. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> dimensions = [[3,4],[4,3]] <strong>Output:</strong> 12 <strong>Explanation:</strong> Length of diagonal is the same for both which is 5, so maximum area = 12. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= dimensions.length <= 100</code></li> <li><code><font face="monospace">dimensions[i].length == 2</font></code></li> <li><code><font face="monospace">1 <= dimensions[i][0], dimensions[i][1] <= 100</font></code></li> </ul>