You are given an array start where start = [startX, startY] represents your initial position (startX, startY) in a 2D space. You are also given the array target where target = [targetX, targetY] represents your target position (targetX, targetY).
The cost of going from a position (x1, y1) to any other position in the space (x2, y2) is |x2 - x1| + |y2 - y1|.
There are also some special roads. You are given a 2D array specialRoads where specialRoads[i] = [x1i, y1i, x2i, y2i, costi] indicates that the ith special road can take you from (x1i, y1i) to (x2i, y2i) with a cost equal to costi. You can use each special road any number of times.
Return the minimum cost required to go from (startX, startY) to (targetX, targetY).
Example 1:
Input: start = [1,1], target = [4,5], specialRoads = [[1,2,3,3,2],[3,4,4,5,1]] Output: 5 Explanation: The optimal path from (1,1) to (4,5) is the following: - (1,1) -> (1,2). This move has a cost of |1 - 1| + |2 - 1| = 1. - (1,2) -> (3,3). This move uses the first special edge, the cost is 2. - (3,3) -> (3,4). This move has a cost of |3 - 3| + |4 - 3| = 1. - (3,4) -> (4,5). This move uses the second special edge, the cost is 1. So the total cost is 1 + 2 + 1 + 1 = 5. It can be shown that we cannot achieve a smaller total cost than 5.
Example 2:
Input: start = [3,2], target = [5,7], specialRoads = [[3,2,3,4,4],[3,3,5,5,5],[3,4,5,6,6]] Output: 7 Explanation: It is optimal to not use any special edges and go directly from the starting to the ending position with a cost |5 - 3| + |7 - 2| = 7.
Constraints:
start.length == target.length == 21 <= startX <= targetX <= 1051 <= startY <= targetY <= 1051 <= specialRoads.length <= 200specialRoads[i].length == 5startX <= x1i, x2i <= targetXstartY <= y1i, y2i <= targetY1 <= costi <= 105