{ "data": { "question": { "questionId": "831", "questionFrontendId": "813", "boundTopicId": null, "title": "Largest Sum of Averages", "titleSlug": "largest-sum-of-averages", "content": "

You are given an integer array nums and an integer k. You can partition the array into at most k non-empty adjacent subarrays. The score of a partition is the sum of the averages of each subarray.

\n\n

Note that the partition must use every integer in nums, and that the score is not necessarily an integer.

\n\n

Return the maximum score you can achieve of all the possible partitions. Answers within 10-6 of the actual answer will be accepted.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums = [9,1,2,3,9], k = 3\nOutput: 20.00000\nExplanation: \nThe best choice is to partition nums into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20.\nWe could have also partitioned nums into [9, 1], [2], [3, 9], for example.\nThat partition would lead to a score of 5 + 2 + 6 = 13, which is worse.\n
\n\n

Example 2:

\n\n
\nInput: nums = [1,2,3,4,5,6,7], k = 4\nOutput: 20.50000\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 1552, "dislikes": 76, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[9,1,2,3,9]\n3\n[1,2,3,4,5,6,7]\n4", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n double largestSumOfAverages(vector& nums, int k) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public double largestSumOfAverages(int[] nums, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def largestSumOfAverages(self, nums, k):\n \"\"\"\n :type nums: List[int]\n :type k: int\n :rtype: float\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def largestSumOfAverages(self, nums: List[int], k: int) -> float:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\ndouble largestSumOfAverages(int* nums, int numsSize, int k){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public double LargestSumOfAverages(int[] nums, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number} k\n * @return {number}\n */\nvar largestSumOfAverages = function(nums, k) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer} k\n# @return {Float}\ndef largest_sum_of_averages(nums, k)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func largestSumOfAverages(_ nums: [Int], _ k: Int) -> Double {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func largestSumOfAverages(nums []int, k int) float64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def largestSumOfAverages(nums: Array[Int], k: Int): Double = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun largestSumOfAverages(nums: IntArray, k: Int): Double {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn largest_sum_of_averages(nums: Vec, k: i32) -> f64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer $k\n * @return Float\n */\n function largestSumOfAverages($nums, $k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function largestSumOfAverages(nums: number[], k: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (largest-sum-of-averages nums k)\n (-> (listof exact-integer?) exact-integer? flonum?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec largest_sum_of_averages(Nums :: [integer()], K :: integer()) -> float().\nlargest_sum_of_averages(Nums, K) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec largest_sum_of_averages(nums :: [integer], k :: integer) :: float\n def largest_sum_of_averages(nums, k) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"39.7K\", \"totalSubmission\": \"75.8K\", \"totalAcceptedRaw\": 39715, \"totalSubmissionRaw\": 75750, \"acRate\": \"52.4%\"}", "hints": [], "solution": { "id": "446", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "[9,1,2,3,9]\n3", "metaData": "{\n \"name\": \"largestSumOfAverages\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"name\": \"k\",\n \"type\": \"integer\"\n }\n ],\n \"return\": {\n \"type\": \"double\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }