We have an array arr
of non-negative integers.
For every (contiguous) subarray sub = [arr[i], arr[i + 1], ..., arr[j]]
(with i <= j
), we take the bitwise OR of all the elements in sub
, obtaining a result arr[i] | arr[i + 1] | ... | arr[j]
.
Return the number of possible results. Results that occur more than once are only counted once in the final answer
Example 1:
Input: arr = [0] Output: 1 Explanation: There is only one possible result: 0.
Example 2:
Input: arr = [1,1,2] Output: 3 Explanation: The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2]. These yield the results 1, 1, 2, 1, 3, 3. There are 3 unique values, so the answer is 3.
Example 3:
Input: arr = [1,2,4] Output: 6 Explanation: The possible results are 1, 2, 3, 4, 6, and 7.
Constraints:
1 <= nums.length <= 5 * 104
0 <= nums[i] <= 109