As the ruler of a kingdom, you have an army of wizards at your command.
You are given a 0-indexed integer array strength
, where strength[i]
denotes the strength of the ith
wizard. For a contiguous group of wizards (i.e. the wizards' strengths form a subarray of strength
), the total strength is defined as the product of the following two values:
Return the sum of the total strengths of all contiguous groups of wizards. Since the answer may be very large, return it modulo 109 + 7
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: strength = [1,3,1,2] Output: 44 Explanation: The following are all the contiguous groups of wizards: - [1] from [1,3,1,2] has a total strength of min([1]) * sum([1]) = 1 * 1 = 1 - [3] from [1,3,1,2] has a total strength of min([3]) * sum([3]) = 3 * 3 = 9 - [1] from [1,3,1,2] has a total strength of min([1]) * sum([1]) = 1 * 1 = 1 - [2] from [1,3,1,2] has a total strength of min([2]) * sum([2]) = 2 * 2 = 4 - [1,3] from [1,3,1,2] has a total strength of min([1,3]) * sum([1,3]) = 1 * 4 = 4 - [3,1] from [1,3,1,2] has a total strength of min([3,1]) * sum([3,1]) = 1 * 4 = 4 - [1,2] from [1,3,1,2] has a total strength of min([1,2]) * sum([1,2]) = 1 * 3 = 3 - [1,3,1] from [1,3,1,2] has a total strength of min([1,3,1]) * sum([1,3,1]) = 1 * 5 = 5 - [3,1,2] from [1,3,1,2] has a total strength of min([3,1,2]) * sum([3,1,2]) = 1 * 6 = 6 - [1,3,1,2] from [1,3,1,2] has a total strength of min([1,3,1,2]) * sum([1,3,1,2]) = 1 * 7 = 7 The sum of all the total strengths is 1 + 9 + 1 + 4 + 4 + 4 + 3 + 5 + 6 + 7 = 44.
Example 2:
Input: strength = [5,4,6] Output: 213 Explanation: The following are all the contiguous groups of wizards: - [5] from [5,4,6] has a total strength of min([5]) * sum([5]) = 5 * 5 = 25 - [4] from [5,4,6] has a total strength of min([4]) * sum([4]) = 4 * 4 = 16 - [6] from [5,4,6] has a total strength of min([6]) * sum([6]) = 6 * 6 = 36 - [5,4] from [5,4,6] has a total strength of min([5,4]) * sum([5,4]) = 4 * 9 = 36 - [4,6] from [5,4,6] has a total strength of min([4,6]) * sum([4,6]) = 4 * 10 = 40 - [5,4,6] from [5,4,6] has a total strength of min([5,4,6]) * sum([5,4,6]) = 4 * 15 = 60 The sum of all the total strengths is 25 + 16 + 36 + 36 + 40 + 60 = 213.
Constraints:
1 <= strength.length <= 105
1 <= strength[i] <= 109