给你一个大小为 m x n
的整数矩阵 grid
,表示一个网格。另给你三个整数 row
、col
和 color
。网格中的每个值表示该位置处的网格块的颜色。
如果两个方块在任意 4 个方向上相邻,则称它们 相邻 。
如果两个方块具有相同的颜色且相邻,它们则属于同一个 连通分量 。
连通分量的边界 是指连通分量中满足下述条件之一的所有网格块:
请你使用指定颜色 color
为所有包含网格块 grid[row][col]
的 连通分量的边界 进行着色。
并返回最终的网格 grid
。
示例 1:
输入:grid = [[1,1],[1,2]], row = 0, col = 0, color = 3 输出:[[3,3],[3,2]]
示例 2:
输入:grid = [[1,2,2],[2,3,2]], row = 0, col = 1, color = 3 输出:[[1,3,3],[2,3,3]]
示例 3:
输入:grid = [[1,1,1],[1,1,1],[1,1,1]], row = 1, col = 1, color = 2 输出:[[2,2,2],[2,1,2],[2,2,2]]
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
1 <= grid[i][j], color <= 1000
0 <= row < m
0 <= col < n