给你一个下标从 0 开始、大小为 n * m
的二维整数矩阵 grid
,定义一个下标从 0 开始、大小为 n * m
的的二维矩阵 p
。如果满足以下条件,则称 p
为 grid
的 乘积矩阵 :
p[i][j]
,它的值等于除了 grid[i][j]
外所有元素的乘积。乘积对 12345
取余数。返回 grid
的乘积矩阵。
示例 1:
输入:grid = [[1,2],[3,4]] 输出:[[24,12],[8,6]] 解释:p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 所以答案是 [[24,12],[8,6]] 。
示例 2:
输入:grid = [[12345],[2],[1]] 输出:[[2],[0],[0]] 解释:p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2 p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0 ,所以 p[0][1] = 0 p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0 ,所以 p[0][2] = 0 所以答案是 [[2],[0],[0]] 。
提示:
1 <= n == grid.length <= 105
1 <= m == grid[i].length <= 105
2 <= n * m <= 105
1 <= grid[i][j] <= 109