给你一个整数数组 nums 和一个整数 k

将数组拆分成一些非空子数组。拆分的 代价 是每个子数组中的 重要性 之和。

trimmed(subarray) 作为子数组的一个特征,其中所有仅出现一次的数字将会被移除。

子数组的 重要性 定义为 k + trimmed(subarray).length

找出并返回拆分 nums 的所有可行方案中的最小代价。

子数组 是数组的一个连续 非空 元素序列。

 

示例 1:

输入:nums = [1,2,1,2,1,3,3], k = 2
输出:8
解释:将 nums 拆分成两个子数组:[1,2], [1,2,1,3,3]
[1,2] 的重要性是 2 + (0) = 2 。
[1,2,1,3,3] 的重要性是 2 + (2 + 2) = 6 。
拆分的代价是 2 + 6 = 8 ,可以证明这是所有可行的拆分方案中的最小代价。

示例 2:

输入:nums = [1,2,1,2,1], k = 2
输出:6
解释:将 nums 拆分成两个子数组:[1,2], [1,2,1] 。
[1,2] 的重要性是 2 + (0) = 2 。
[1,2,1] 的重要性是 2 + (2) = 4 。
拆分的代价是 2 + 4 = 6 ,可以证明这是所有可行的拆分方案中的最小代价。

示例 3:

输入:nums = [1,2,1,2,1], k = 5
输出:10
解释:将 nums 拆分成一个子数组:[1,2,1,2,1].
[1,2,1,2,1] 的重要性是 5 + (3 + 2) = 10 。
拆分的代价是 10 ,可以证明这是所有可行的拆分方案中的最小代价。

 

提示: