{ "data": { "question": { "questionId": "388", "questionFrontendId": "388", "boundTopicId": null, "title": "Longest Absolute File Path", "titleSlug": "longest-absolute-file-path", "content": "
Suppose we have a file system that stores both files and directories. An example of one system is represented in the following picture:
\n\n\n\nHere, we have dir
as the only directory in the root. dir
contains two subdirectories, subdir1
and subdir2
. subdir1
contains a file file1.ext
and subdirectory subsubdir1
. subdir2
contains a subdirectory subsubdir2
, which contains a file file2.ext
.
In text form, it looks like this (with ⟶ representing the tab character):
\n\n\ndir\n⟶ subdir1\n⟶ ⟶ file1.ext\n⟶ ⟶ subsubdir1\n⟶ subdir2\n⟶ ⟶ subsubdir2\n⟶ ⟶ ⟶ file2.ext\n\n\n
If we were to write this representation in code, it will look like this: "dir\\n\\tsubdir1\\n\\t\\tfile1.ext\\n\\t\\tsubsubdir1\\n\\tsubdir2\\n\\t\\tsubsubdir2\\n\\t\\t\\tfile2.ext"
. Note that the '\\n'
and '\\t'
are the new-line and tab characters.
Every file and directory has a unique absolute path in the file system, which is the order of directories that must be opened to reach the file/directory itself, all concatenated by '/'s
. Using the above example, the absolute path to file2.ext
is "dir/subdir2/subsubdir2/file2.ext"
. Each directory name consists of letters, digits, and/or spaces. Each file name is of the form name.extension
, where name
and extension
consist of letters, digits, and/or spaces.
Given a string input
representing the file system in the explained format, return the length of the longest absolute path to a file in the abstracted file system. If there is no file in the system, return 0
.
\n
Example 1:
\n\n\nInput: input = "dir\\n\\tsubdir1\\n\\tsubdir2\\n\\t\\tfile.ext"\nOutput: 20\nExplanation: We have only one file, and the absolute path is "dir/subdir2/file.ext" of length 20.\n\n\n
Example 2:
\n\n\nInput: input = "dir\\n\\tsubdir1\\n\\t\\tfile1.ext\\n\\t\\tsubsubdir1\\n\\tsubdir2\\n\\t\\tsubsubdir2\\n\\t\\t\\tfile2.ext"\nOutput: 32\nExplanation: We have two files:\n"dir/subdir1/file1.ext" of length 21\n"dir/subdir2/subsubdir2/file2.ext" of length 32.\nWe return 32 since it is the longest absolute path to a file.\n\n\n
Example 3:
\n\n\nInput: input = "a"\nOutput: 0\nExplanation: We do not have any files, just a single directory named "a".\n\n\n
\n
Constraints:
\n\n1 <= input.length <= 104
input
may contain lowercase or uppercase English letters, a new line character '\\n'
, a tab character '\\t'
, a dot '.'
, a space ' '
, and digits.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.