{ "data": { "question": { "questionId": "1900", "questionFrontendId": "1774", "boundTopicId": null, "title": "Closest Dessert Cost", "titleSlug": "closest-dessert-cost", "content": "

You would like to make dessert and are preparing to buy the ingredients. You have n ice cream base flavors and m types of toppings to choose from. You must follow these rules when making your dessert:

\n\n\n\n

You are given three inputs:

\n\n\n\n

You want to make a dessert with a total cost as close to target as possible.

\n\n

Return the closest possible cost of the dessert to target. If there are multiple, return the lower one.

\n\n

 

\n

Example 1:

\n\n
\nInput: baseCosts = [1,7], toppingCosts = [3,4], target = 10\nOutput: 10\nExplanation: Consider the following combination (all 0-indexed):\n- Choose base 1: cost 7\n- Take 1 of topping 0: cost 1 x 3 = 3\n- Take 0 of topping 1: cost 0 x 4 = 0\nTotal: 7 + 3 + 0 = 10.\n
\n\n

Example 2:

\n\n
\nInput: baseCosts = [2,3], toppingCosts = [4,5,100], target = 18\nOutput: 17\nExplanation: Consider the following combination (all 0-indexed):\n- Choose base 1: cost 3\n- Take 1 of topping 0: cost 1 x 4 = 4\n- Take 2 of topping 1: cost 2 x 5 = 10\n- Take 0 of topping 2: cost 0 x 100 = 0\nTotal: 3 + 4 + 10 + 0 = 17. You cannot make a dessert with a total cost of 18.\n
\n\n

Example 3:

\n\n
\nInput: baseCosts = [3,10], toppingCosts = [2,5], target = 9\nOutput: 8\nExplanation: It is possible to make desserts with cost 8 and 10. Return 8 as it is the lower cost.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 398, "dislikes": 42, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[1,7]\n[3,4]\n10\n[2,3]\n[4,5,100]\n18\n[3,10]\n[2,5]\n9", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Backtracking", "slug": "backtracking", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int closestCost(vector& baseCosts, vector& toppingCosts, int target) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int closestCost(int[] baseCosts, int[] toppingCosts, int target) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def closestCost(self, baseCosts, toppingCosts, target):\n \"\"\"\n :type baseCosts: List[int]\n :type toppingCosts: List[int]\n :type target: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def closestCost(self, baseCosts: List[int], toppingCosts: List[int], target: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint closestCost(int* baseCosts, int baseCostsSize, int* toppingCosts, int toppingCostsSize, int target){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int ClosestCost(int[] baseCosts, int[] toppingCosts, int target) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} baseCosts\n * @param {number[]} toppingCosts\n * @param {number} target\n * @return {number}\n */\nvar closestCost = function(baseCosts, toppingCosts, target) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} base_costs\n# @param {Integer[]} topping_costs\n# @param {Integer} target\n# @return {Integer}\ndef closest_cost(base_costs, topping_costs, target)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func closestCost(_ baseCosts: [Int], _ toppingCosts: [Int], _ target: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func closestCost(baseCosts []int, toppingCosts []int, target int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def closestCost(baseCosts: Array[Int], toppingCosts: Array[Int], target: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun closestCost(baseCosts: IntArray, toppingCosts: IntArray, target: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn closest_cost(base_costs: Vec, topping_costs: Vec, target: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $baseCosts\n * @param Integer[] $toppingCosts\n * @param Integer $target\n * @return Integer\n */\n function closestCost($baseCosts, $toppingCosts, $target) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function closestCost(baseCosts: number[], toppingCosts: number[], target: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (closest-cost baseCosts toppingCosts target)\n (-> (listof exact-integer?) (listof exact-integer?) exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec closest_cost(BaseCosts :: [integer()], ToppingCosts :: [integer()], Target :: integer()) -> integer().\nclosest_cost(BaseCosts, ToppingCosts, Target) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec closest_cost(base_costs :: [integer], topping_costs :: [integer], target :: integer) :: integer\n def closest_cost(base_costs, topping_costs, target) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"14.8K\", \"totalSubmission\": \"32.3K\", \"totalAcceptedRaw\": 14835, \"totalSubmissionRaw\": 32325, \"acRate\": \"45.9%\"}", "hints": [ "As the constraints are not large, you can brute force and enumerate all the possibilities." ], "solution": null, "status": null, "sampleTestCase": "[1,7]\n[3,4]\n10", "metaData": "{\n \"name\": \"closestCost\",\n \"params\": [\n {\n \"name\": \"baseCosts\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"toppingCosts\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"target\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }