{ "data": { "question": { "questionId": "2182", "questionFrontendId": "2058", "boundTopicId": null, "title": "Find the Minimum and Maximum Number of Nodes Between Critical Points", "titleSlug": "find-the-minimum-and-maximum-number-of-nodes-between-critical-points", "content": "
A critical point in a linked list is defined as either a local maxima or a local minima.
\n\nA node is a local maxima if the current node has a value strictly greater than the previous node and the next node.
\n\nA node is a local minima if the current node has a value strictly smaller than the previous node and the next node.
\n\nNote that a node can only be a local maxima/minima if there exists both a previous node and a next node.
\n\nGiven a linked list head
, return an array of length 2 containing [minDistance, maxDistance]
where minDistance
is the minimum distance between any two distinct critical points and maxDistance
is the maximum distance between any two distinct critical points. If there are fewer than two critical points, return [-1, -1]
.
\n
Example 1:
\n\n\nInput: head = [3,1]\nOutput: [-1,-1]\nExplanation: There are no critical points in [3,1].\n\n\n
Example 2:
\n\n\nInput: head = [5,3,1,2,5,1,2]\nOutput: [1,3]\nExplanation: There are three critical points:\n- [5,3,1,2,5,1,2]: The third node is a local minima because 1 is less than 3 and 2.\n- [5,3,1,2,5,1,2]: The fifth node is a local maxima because 5 is greater than 2 and 1.\n- [5,3,1,2,5,1,2]: The sixth node is a local minima because 1 is less than 5 and 2.\nThe minimum distance is between the fifth and the sixth node. minDistance = 6 - 5 = 1.\nThe maximum distance is between the third and the sixth node. maxDistance = 6 - 3 = 3.\n\n\n
Example 3:
\n\n\nInput: head = [1,3,2,2,3,2,2,2,7]\nOutput: [3,3]\nExplanation: There are two critical points:\n- [1,3,2,2,3,2,2,2,7]: The second node is a local maxima because 3 is greater than 1 and 2.\n- [1,3,2,2,3,2,2,2,7]: The fifth node is a local maxima because 3 is greater than 2 and 2.\nBoth the minimum and maximum distances are between the second and the fifth node.\nThus, minDistance and maxDistance is 5 - 2 = 3.\nNote that the last node is not considered a local maxima because it does not have a next node.\n\n\n
\n
Constraints:
\n\n[2, 105]
.1 <= Node.val <= 105
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.