{ "data": { "question": { "questionId": "253", "questionFrontendId": "253", "boundTopicId": null, "title": "Meeting Rooms II", "titleSlug": "meeting-rooms-ii", "content": null, "translatedTitle": null, "translatedContent": null, "isPaidOnly": true, "difficulty": "Medium", "likes": 5309, "dislikes": 104, "isLiked": null, "similarQuestions": "[{\"title\": \"Merge Intervals\", \"titleSlug\": \"merge-intervals\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Meeting Rooms\", \"titleSlug\": \"meeting-rooms\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Minimum Number of Arrows to Burst Balloons\", \"titleSlug\": \"minimum-number-of-arrows-to-burst-balloons\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Car Pooling\", \"titleSlug\": \"car-pooling\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[[0,30],[5,10],[15,20]]\n[[7,10],[2,4]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Two Pointers", "slug": "two-pointers", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": null, "stats": "{\"totalAccepted\": \"610.3K\", \"totalSubmission\": \"1.2M\", \"totalAcceptedRaw\": 610278, \"totalSubmissionRaw\": 1232272, \"acRate\": \"49.5%\"}", "hints": [ "Think about how we would approach this problem in a very simplistic way. We will allocate rooms to meetings that occur earlier in the day v/s the ones that occur later on, right?", "If you've figured out that we have to sort the meetings by their start time, the next thing to think about is how do we do the allocation?
There are two scenarios possible here for any meeting. Either there is no meeting room available and a new one has to be allocated, or a meeting room has freed up and this meeting can take place there.", "An important thing to note is that we don't really care which room gets freed up while allocating a room for the current meeting. As long as a room is free, our job is done.

We already know the rooms we have allocated till now and we also know when are they due to get free because of the end times of the meetings going on in those rooms. We can simply check the room which is due to get vacated the earliest amongst all the allocated rooms.", "Following up on the previous hint, we can make use of a min-heap to store the end times of the meetings in various rooms.

So, every time we want to check if any room is free or not, simply check the topmost element of the min heap as that would be the room that would get free the earliest out of all the other rooms currently occupied.\r\n\r\n

If the room we extracted from the top of the min heap isn't free, then no other room is. So, we can save time here and simply allocate a new room." ], "solution": { "id": "554", "canSeeDetail": false, "paidOnly": true, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "[[0,30],[5,10],[15,20]]", "metaData": "{\r\n \"name\": \"minMeetingRooms\",\r\n \"params\": [\r\n {\r\n \"name\": \"intervals\",\r\n \"type\": \"integer[][]\"\r\n }\r\n ],\r\n \"return\": {\r\n \"type\": \"integer\"\r\n }\r\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": { "id": "794", "date": "2022-01-15", "incompleteChallengeCount": 0, "streakCount": 0, "type": "WEEKLY", "__typename": "ChallengeQuestionNode" }, "__typename": "QuestionNode" } } }