{ "data": { "question": { "questionId": "3075", "questionFrontendId": "2883", "boundTopicId": null, "title": "Drop Missing Data", "titleSlug": "drop-missing-data", "content": "
\nDataFrame students\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\n\n
There are some rows having missing values in the name
column.
Write a solution to remove the rows with missing values.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput:\n+------------+-------+-----+\n| student_id | name | age |\n+------------+-------+-----+\n| 32 | Piper | 5 |\n| 217 | Grace | 19 |\n| 779 | None | 20 |\n| 849 | None | 14 |\n+------------+-------+-----+\nOutput:\n+------------+-------+-----+\n| student_id | name | age |\n+------------+-------+-----+\n| 32 | Piper | 5 |\n| 217 | Grace | 19 |\n+------------+-------+-----+\nExplanation: \nStudents with ids 779 and 849 have empty values in the name column, so they will be removed.\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 7, "dislikes": 1, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,\"Grace\",19],[779,null,20],[849,null,14]]}}", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef dropMissingData(students: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"270\", \"totalSubmission\": \"295\", \"totalAcceptedRaw\": 270, \"totalSubmissionRaw\": 295, \"acRate\": \"91.5%\"}", "hints": [ "Consider using a build-in function in pandas library to remove the rows with missing values based on specified data." ], "solution": { "id": "2108", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,\"Grace\",19],[779,null,20],[849,null,14]]}}", "metaData": "{\n \"pythondata\": [\n \"students = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"dropMissingData\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"pythondata\": [\"Pandas\", \"
Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }