{ "data": { "question": { "questionId": "2387", "questionFrontendId": "2294", "boundTopicId": null, "title": "Partition Array Such That Maximum Difference Is K", "titleSlug": "partition-array-such-that-maximum-difference-is-k", "content": "

You are given an integer array nums and an integer k. You may partition nums into one or more subsequences such that each element in nums appears in exactly one of the subsequences.

\n\n

Return the minimum number of subsequences needed such that the difference between the maximum and minimum values in each subsequence is at most k.

\n\n

A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums = [3,6,1,2,5], k = 2\nOutput: 2\nExplanation:\nWe can partition nums into the two subsequences [3,1,2] and [6,5].\nThe difference between the maximum and minimum value in the first subsequence is 3 - 1 = 2.\nThe difference between the maximum and minimum value in the second subsequence is 6 - 5 = 1.\nSince two subsequences were created, we return 2. It can be shown that 2 is the minimum number of subsequences needed.\n
\n\n

Example 2:

\n\n
\nInput: nums = [1,2,3], k = 1\nOutput: 2\nExplanation:\nWe can partition nums into the two subsequences [1,2] and [3].\nThe difference between the maximum and minimum value in the first subsequence is 2 - 1 = 1.\nThe difference between the maximum and minimum value in the second subsequence is 3 - 3 = 0.\nSince two subsequences were created, we return 2. Note that another optimal solution is to partition nums into the two subsequences [1] and [2,3].\n
\n\n

Example 3:

\n\n
\nInput: nums = [2,2,4,5], k = 0\nOutput: 3\nExplanation:\nWe can partition nums into the three subsequences [2,2], [4], and [5].\nThe difference between the maximum and minimum value in the first subsequences is 2 - 2 = 0.\nThe difference between the maximum and minimum value in the second subsequences is 4 - 4 = 0.\nThe difference between the maximum and minimum value in the third subsequences is 5 - 5 = 0.\nSince three subsequences were created, we return 3. It can be shown that 3 is the minimum number of subsequences needed.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 706, "dislikes": 24, "isLiked": null, "similarQuestions": "[{\"title\": \"Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit\", \"titleSlug\": \"longest-continuous-subarray-with-absolute-diff-less-than-or-equal-to-limit\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Maximum Beauty of an Array After Applying Operation\", \"titleSlug\": \"maximum-beauty-of-an-array-after-applying-operation\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[3,6,1,2,5]\n2\n[1,2,3]\n1\n[2,2,4,5]\n0", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int partitionArray(vector& nums, int k) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int partitionArray(int[] nums, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def partitionArray(self, nums, k):\n \"\"\"\n :type nums: List[int]\n :type k: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def partitionArray(self, nums: List[int], k: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int partitionArray(int* nums, int numsSize, int k) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int PartitionArray(int[] nums, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number} k\n * @return {number}\n */\nvar partitionArray = function(nums, k) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function partitionArray(nums: number[], k: number): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer $k\n * @return Integer\n */\n function partitionArray($nums, $k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func partitionArray(_ nums: [Int], _ k: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun partitionArray(nums: IntArray, k: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int partitionArray(List nums, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func partitionArray(nums []int, k int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer} k\n# @return {Integer}\ndef partition_array(nums, k)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def partitionArray(nums: Array[Int], k: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn partition_array(nums: Vec, k: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (partition-array nums k)\n (-> (listof exact-integer?) exact-integer? exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec partition_array(Nums :: [integer()], K :: integer()) -> integer().\npartition_array(Nums, K) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec partition_array(nums :: [integer], k :: integer) :: integer\n def partition_array(nums, k) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"36.8K\", \"totalSubmission\": \"50.3K\", \"totalAcceptedRaw\": 36779, \"totalSubmissionRaw\": 50281, \"acRate\": \"73.1%\"}", "hints": [ "Which values in each subsequence matter? The only values that matter are the maximum and minimum values.", "Let the maximum and minimum values of a subsequence be Max and Min. It is optimal to place all values in between Max and Min in the original array in the same subsequence as Max and Min.", "Sort the array." ], "solution": null, "status": null, "sampleTestCase": "[3,6,1,2,5]\n2", "metaData": "{\n \"name\": \"partitionArray\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }