{ "data": { "question": { "questionId": "1186", "questionFrontendId": "1117", "boundTopicId": null, "title": "Building H2O", "titleSlug": "building-h2o", "content": "
There are two kinds of threads: oxygen
and hydrogen
. Your goal is to group these threads to form water molecules.
There is a barrier where each thread has to wait until a complete molecule can be formed. Hydrogen and oxygen threads will be given releaseHydrogen
and releaseOxygen
methods respectively, which will allow them to pass the barrier. These threads should pass the barrier in groups of three, and they must immediately bond with each other to form a water molecule. You must guarantee that all the threads from one molecule bond before any other threads from the next molecule do.
In other words:
\n\nWe do not have to worry about matching the threads up explicitly; the threads do not necessarily know which other threads they are paired up with. The key is that threads pass the barriers in complete sets; thus, if we examine the sequence of threads that bind and divide them into groups of three, each group should contain one oxygen and two hydrogen threads.
\n\nWrite synchronization code for oxygen and hydrogen molecules that enforces these constraints.
\n\n\n
Example 1:
\n\n\nInput: water = "HOH"\nOutput: "HHO"\nExplanation: "HOH" and "OHH" are also valid answers.\n\n\n
Example 2:
\n\n\nInput: water = "OOHHHH"\nOutput: "HHOHHO"\nExplanation: "HOHHHO", "OHHHHO", "HHOHOH", "HOHHOH", "OHHHOH", "HHOOHH", "HOHOHH" and "OHHOHH" are also valid answers.\n\n\n
\n
Constraints:
\n\n3 * n == water.length
1 <= n <= 20
water[i]
is either 'H'
or 'O'
.2 * n
'H'
in water
.n
'O'
in water
.Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"python3\": [\"Python3\", \"
Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }