{ "data": { "question": { "questionId": "2330", "questionFrontendId": "2234", "boundTopicId": null, "title": "Maximum Total Beauty of the Gardens", "titleSlug": "maximum-total-beauty-of-the-gardens", "content": "

Alice is a caretaker of n gardens and she wants to plant flowers to maximize the total beauty of all her gardens.

\n\n

You are given a 0-indexed integer array flowers of size n, where flowers[i] is the number of flowers already planted in the ith garden. Flowers that are already planted cannot be removed. You are then given another integer newFlowers, which is the maximum number of flowers that Alice can additionally plant. You are also given the integers target, full, and partial.

\n\n

A garden is considered complete if it has at least target flowers. The total beauty of the gardens is then determined as the sum of the following:

\n\n\n\n

Return the maximum total beauty that Alice can obtain after planting at most newFlowers flowers.

\n\n

 

\n

Example 1:

\n\n
\nInput: flowers = [1,3,1,1], newFlowers = 7, target = 6, full = 12, partial = 1\nOutput: 14\nExplanation: Alice can plant\n- 2 flowers in the 0th garden\n- 3 flowers in the 1st garden\n- 1 flower in the 2nd garden\n- 1 flower in the 3rd garden\nThe gardens will then be [3,6,2,2]. She planted a total of 2 + 3 + 1 + 1 = 7 flowers.\nThere is 1 garden that is complete.\nThe minimum number of flowers in the incomplete gardens is 2.\nThus, the total beauty is 1 * 12 + 2 * 1 = 12 + 2 = 14.\nNo other way of planting flowers can obtain a total beauty higher than 14.\n
\n\n

Example 2:

\n\n
\nInput: flowers = [2,4,5,3], newFlowers = 10, target = 5, full = 2, partial = 6\nOutput: 30\nExplanation: Alice can plant\n- 3 flowers in the 0th garden\n- 0 flowers in the 1st garden\n- 0 flowers in the 2nd garden\n- 2 flowers in the 3rd garden\nThe gardens will then be [5,4,5,5]. She planted a total of 3 + 0 + 0 + 2 = 5 flowers.\nThere are 3 gardens that are complete.\nThe minimum number of flowers in the incomplete gardens is 4.\nThus, the total beauty is 3 * 2 + 4 * 6 = 6 + 24 = 30.\nNo other way of planting flowers can obtain a total beauty higher than 30.\nNote that Alice could make all the gardens complete but in this case, she would obtain a lower total beauty.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 416, "dislikes": 37, "isLiked": null, "similarQuestions": "[{\"title\": \"Split Array Largest Sum\", \"titleSlug\": \"split-array-largest-sum\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[1,3,1,1]\n7\n6\n12\n1\n[2,4,5,3]\n10\n5\n2\n6", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Two Pointers", "slug": "two-pointers", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n long long maximumBeauty(vector& flowers, long long newFlowers, int target, int full, int partial) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long maximumBeauty(int[] flowers, long newFlowers, int target, int full, int partial) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maximumBeauty(self, flowers, newFlowers, target, full, partial):\n \"\"\"\n :type flowers: List[int]\n :type newFlowers: int\n :type target: int\n :type full: int\n :type partial: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maximumBeauty(self, flowers: List[int], newFlowers: int, target: int, full: int, partial: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "long long maximumBeauty(int* flowers, int flowersSize, long long newFlowers, int target, int full, int partial) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long MaximumBeauty(int[] flowers, long newFlowers, int target, int full, int partial) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} flowers\n * @param {number} newFlowers\n * @param {number} target\n * @param {number} full\n * @param {number} partial\n * @return {number}\n */\nvar maximumBeauty = function(flowers, newFlowers, target, full, partial) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maximumBeauty(flowers: number[], newFlowers: number, target: number, full: number, partial: number): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $flowers\n * @param Integer $newFlowers\n * @param Integer $target\n * @param Integer $full\n * @param Integer $partial\n * @return Integer\n */\n function maximumBeauty($flowers, $newFlowers, $target, $full, $partial) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maximumBeauty(_ flowers: [Int], _ newFlowers: Int, _ target: Int, _ full: Int, _ partial: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maximumBeauty(flowers: IntArray, newFlowers: Long, target: Int, full: Int, partial: Int): Long {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int maximumBeauty(List flowers, int newFlowers, int target, int full, int partial) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maximumBeauty(flowers []int, newFlowers int64, target int, full int, partial int) int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} flowers\n# @param {Integer} new_flowers\n# @param {Integer} target\n# @param {Integer} full\n# @param {Integer} partial\n# @return {Integer}\ndef maximum_beauty(flowers, new_flowers, target, full, partial)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maximumBeauty(flowers: Array[Int], newFlowers: Long, target: Int, full: Int, partial: Int): Long = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn maximum_beauty(flowers: Vec, new_flowers: i64, target: i32, full: i32, partial: i32) -> i64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (maximum-beauty flowers newFlowers target full partial)\n (-> (listof exact-integer?) exact-integer? exact-integer? exact-integer? exact-integer? exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec maximum_beauty(Flowers :: [integer()], NewFlowers :: integer(), Target :: integer(), Full :: integer(), Partial :: integer()) -> integer().\nmaximum_beauty(Flowers, NewFlowers, Target, Full, Partial) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec maximum_beauty(flowers :: [integer], new_flowers :: integer, target :: integer, full :: integer, partial :: integer) :: integer\n def maximum_beauty(flowers, new_flowers, target, full, partial) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"6.5K\", \"totalSubmission\": \"22.5K\", \"totalAcceptedRaw\": 6494, \"totalSubmissionRaw\": 22514, \"acRate\": \"28.8%\"}", "hints": [ "Say we choose k gardens to be complete, is there an optimal way of choosing which gardens to plant more flowers to achieve this?", "For a given k, we should greedily fill-up the k gardens with the most flowers planted already. This gives us the most remaining flowers to fill up the other gardens.", "After sorting flowers, we can thus try every possible k and what is left is to find the highest minimum flowers we can obtain by planting the remaining flowers in the other gardens.", "To find the highest minimum in the other gardens, we can use binary search to find the most optimal way of planting." ], "solution": null, "status": null, "sampleTestCase": "[1,3,1,1]\n7\n6\n12\n1", "metaData": "{\n \"name\": \"maximumBeauty\",\n \"params\": [\n {\n \"name\": \"flowers\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"long\",\n \"name\": \"newFlowers\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"target\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"full\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"partial\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }