{ "data": { "question": { "questionId": "1710", "questionFrontendId": "1606", "boundTopicId": null, "title": "Find Servers That Handled Most Number of Requests", "titleSlug": "find-servers-that-handled-most-number-of-requests", "content": "
You have k
servers numbered from 0
to k-1
that are being used to handle multiple requests simultaneously. Each server has infinite computational capacity but cannot handle more than one request at a time. The requests are assigned to servers according to a specific algorithm:
ith
(0-indexed) request arrives.(i % k)th
server is available, assign the request to that server.ith
server is busy, try to assign the request to the (i+1)th
server, then the (i+2)th
server, and so on.You are given a strictly increasing array arrival
of positive integers, where arrival[i]
represents the arrival time of the ith
request, and another array load
, where load[i]
represents the load of the ith
request (the time it takes to complete). Your goal is to find the busiest server(s). A server is considered busiest if it handled the most number of requests successfully among all the servers.
Return a list containing the IDs (0-indexed) of the busiest server(s). You may return the IDs in any order.
\n\n\n
Example 1:
\n\n\nInput: k = 3, arrival = [1,2,3,4,5], load = [5,2,3,3,3] \nOutput: [1] \nExplanation: \nAll of the servers start out available.\nThe first 3 requests are handled by the first 3 servers in order.\nRequest 3 comes in. Server 0 is busy, so it's assigned to the next available server, which is 1.\nRequest 4 comes in. It cannot be handled since all servers are busy, so it is dropped.\nServers 0 and 2 handled one request each, while server 1 handled two requests. Hence server 1 is the busiest server.\n\n\n
Example 2:
\n\n\nInput: k = 3, arrival = [1,2,3,4], load = [1,2,1,2]\nOutput: [0]\nExplanation: \nThe first 3 requests are handled by first 3 servers.\nRequest 3 comes in. It is handled by server 0 since the server is available.\nServer 0 handled two requests, while servers 1 and 2 handled one request each. Hence server 0 is the busiest server.\n\n\n
Example 3:
\n\n\nInput: k = 3, arrival = [1,2,3], load = [10,12,11]\nOutput: [0,1,2]\nExplanation: Each server handles a single request, so they are all considered the busiest.\n\n\n
\n
Constraints:
\n\n1 <= k <= 105
1 <= arrival.length, load.length <= 105
arrival.length == load.length
1 <= arrival[i], load[i] <= 109
arrival
is strictly increasing.Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }