{ "data": { "question": { "questionId": "133", "questionFrontendId": "133", "boundTopicId": null, "title": "Clone Graph", "titleSlug": "clone-graph", "content": "
Given a reference of a node in a connected undirected graph.
\n\nReturn a deep copy (clone) of the graph.
\n\nEach node in the graph contains a value (int
) and a list (List[Node]
) of its neighbors.
\nclass Node {\n public int val;\n public List<Node> neighbors;\n}\n\n\n
\n\n
Test case format:
\n\nFor simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
\n\nThe given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
\n
Example 1:
\n\n\nInput: adjList = [[2,4],[1,3],[2,4],[1,3]]\nOutput: [[2,4],[1,3],[2,4],[1,3]]\nExplanation: There are 4 nodes in the graph.\n1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).\n2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).\n3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).\n4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).\n\n\n
Example 2:
\n\n\nInput: adjList = [[]]\nOutput: [[]]\nExplanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.\n\n\n
Example 3:
\n\n\nInput: adjList = []\nOutput: []\nExplanation: This an empty graph, it does not have any nodes.\n\n\n
\n
Constraints:
\n\n[0, 100]
.1 <= Node.val <= 100
Node.val
is unique for each node.Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": { "id": "1296", "date": "2023-04-08", "incompleteChallengeCount": 0, "streakCount": 0, "type": "DAILY", "__typename": "ChallengeQuestionNode" }, "__typename": "QuestionNode" } } }