给你一个下标从 0 开始、由 n
个整数组成的数组 nums
和一个整数 target
。
你的初始位置在下标 0
。在一步操作中,你可以从下标 i
跳跃到任意满足下述条件的下标 j
:
0 <= i < j < n
-target <= nums[j] - nums[i] <= target
返回到达下标 n - 1
处所需的 最大跳跃次数 。
如果无法到达下标 n - 1
,返回 -1
。
示例 1:
输入:nums = [1,3,6,4,1,2], target = 2 输出:3 解释:要想以最大跳跃次数从下标 0 到下标 n - 1 ,可以按下述跳跃序列执行操作: - 从下标 0 跳跃到下标 1 。 - 从下标 1 跳跃到下标 3 。 - 从下标 3 跳跃到下标 5 。 可以证明,从 0 到 n - 1 的所有方案中,不存在比 3 步更长的跳跃序列。因此,答案是 3 。
示例 2:
输入:nums = [1,3,6,4,1,2], target = 3 输出:5 解释:要想以最大跳跃次数从下标 0 到下标 n - 1 ,可以按下述跳跃序列执行操作: - 从下标 0 跳跃到下标 1 。 - 从下标 1 跳跃到下标 2 。 - 从下标 2 跳跃到下标 3 。 - 从下标 3 跳跃到下标 4 。 - 从下标 4 跳跃到下标 5 。 可以证明,从 0 到 n - 1 的所有方案中,不存在比 5 步更长的跳跃序列。因此,答案是 5 。
示例 3:
输入:nums = [1,3,6,4,1,2], target = 0 输出:-1 解释:可以证明不存在从 0 到 n - 1 的跳跃序列。因此,答案是 -1 。
提示:
2 <= nums.length == n <= 1000
-109 <= nums[i] <= 109
0 <= target <= 2 * 109