给你一个大小为 n x n 的整数矩阵 board ,方格按从 1n2 编号,编号遵循 转行交替方式 从左下角开始 (即,从 board[n - 1][0] 开始)每一行交替方向。

玩家从棋盘上的方格 1 (总是在最后一行、第一列)开始出发。

每一回合,玩家需要从当前方格 curr 开始出发,按下述要求前进:

rc 列的棋盘,按前述方法编号,棋盘格中可能存在 “蛇” 或 “梯子”;如果 board[r][c] != -1,那个蛇或梯子的目的地将会是 board[r][c]。编号为 1n2 的方格上没有蛇或梯子。

注意,玩家在每回合的前进过程中最多只能爬过蛇或梯子一次:就算目的地是另一条蛇或梯子的起点,玩家也 不能 继续移动。

返回达到编号为 n2 的方格所需的最少移动次数,如果不可能,则返回 -1

 

示例 1:

输入:board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]]
输出:4
解释:
首先,从方格 1 [第 5 行,第 0 列] 开始。 
先决定移动到方格 2 ,并必须爬过梯子移动到到方格 15 。
然后决定移动到方格 17 [第 3 行,第 4 列],必须爬过蛇到方格 13 。
接着决定移动到方格 14 ,且必须通过梯子移动到方格 35 。 
最后决定移动到方格 36 , 游戏结束。 
可以证明需要至少 4 次移动才能到达最后一个方格,所以答案是 4 。 

示例 2:

输入:board = [[-1,-1],[-1,3]]
输出:1

 

提示: