给你一个大小为 n x n
的整数矩阵 board
,方格按从 1
到 n2
编号,编号遵循 转行交替方式 ,从左下角开始 (即,从 board[n - 1][0]
开始)每一行交替方向。
玩家从棋盘上的方格 1
(总是在最后一行、第一列)开始出发。
每一回合,玩家需要从当前方格 curr
开始出发,按下述要求前进:
next
,目标方格的编号符合范围 [curr + 1, min(curr + 6, n2)]
。
next
处存在蛇或梯子,那么玩家会传送到蛇或梯子的目的地。否则,玩家传送到目标方格 next
。 n2
的方格时,游戏结束。r
行 c
列的棋盘,按前述方法编号,棋盘格中可能存在 “蛇” 或 “梯子”;如果 board[r][c] != -1
,那个蛇或梯子的目的地将会是 board[r][c]
。编号为 1
和 n2
的方格上没有蛇或梯子。
注意,玩家在每回合的前进过程中最多只能爬过蛇或梯子一次:就算目的地是另一条蛇或梯子的起点,玩家也 不能 继续移动。
[[-1,4],[-1,3]]
,第一次移动,玩家的目标方格是 2
。那么这个玩家将会顺着梯子到达方格 3
,但 不能 顺着方格 3
上的梯子前往方格 4
。返回达到编号为 n2
的方格所需的最少移动次数,如果不可能,则返回 -1
。
示例 1:
输入:board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]] 输出:4 解释: 首先,从方格 1 [第 5 行,第 0 列] 开始。 先决定移动到方格 2 ,并必须爬过梯子移动到到方格 15 。 然后决定移动到方格 17 [第 3 行,第 4 列],必须爬过蛇到方格 13 。 接着决定移动到方格 14 ,且必须通过梯子移动到方格 35 。 最后决定移动到方格 36 , 游戏结束。 可以证明需要至少 4 次移动才能到达最后一个方格,所以答案是 4 。
示例 2:
输入:board = [[-1,-1],[-1,3]] 输出:1
提示:
n == board.length == board[i].length
2 <= n <= 20
grid[i][j]
的值是 -1
或在范围 [1, n2]
内1
和 n2
的方格上没有蛇或梯子