{ "data": { "question": { "questionId": "2279", "questionFrontendId": "2178", "boundTopicId": null, "title": "Maximum Split of Positive Even Integers", "titleSlug": "maximum-split-of-positive-even-integers", "content": "
You are given an integer finalSum. Split it into a sum of a maximum number of unique positive even integers.
finalSum = 12, the following splits are valid (unique positive even integers summing up to finalSum): (12), (2 + 10), (2 + 4 + 6), and (4 + 8). Among them, (2 + 4 + 6) contains the maximum number of integers. Note that finalSum cannot be split into (2 + 2 + 4 + 4) as all the numbers should be unique.Return a list of integers that represent a valid split containing a maximum number of integers. If no valid split exists for finalSum, return an empty list. You may return the integers in any order.
\n
Example 1:
\n\n\nInput: finalSum = 12\nOutput: [2,4,6]\nExplanation: The following are valid splits:\n\n(12),(2 + 10),(2 + 4 + 6), and(4 + 8).\n(2 + 4 + 6) has the maximum number of integers, which is 3. Thus, we return [2,4,6].\nNote that [2,6,4], [6,2,4], etc. are also accepted.\n
Example 2:
\n\n\nInput: finalSum = 7\nOutput: []\nExplanation: There are no valid splits for the given finalSum.\nThus, we return an empty array.\n\n\n
Example 3:
\n\n\nInput: finalSum = 28\nOutput: [6,8,2,12]\nExplanation: The following are valid splits:\n\n(2 + 26),(6 + 8 + 2 + 12), and(4 + 24). \n(6 + 8 + 2 + 12)has the maximum number of integers, which is 4. Thus, we return [6,8,2,12].\nNote that [10,2,4,12], [6,2,4,16], etc. are also accepted.\n
\n
Constraints:
\n\n1 <= finalSum <= 1010Compiled with clang 11 using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2 using the gnu11 standard.
Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7.
Kotlin 1.9.0.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }